A platform for research: civil engineering, architecture and urbanism
ENGINEERING METHOD AND MANUFACTURING METHOD FOR POLYMER CEMENT MORTAR HAVING EXPLOSIVE FRACTURE RESISTANCE AND POLYMER CEMENT MORTAR HAVING EXPLOSIVE FRACTURE RESISTANCE
PROBLEM TO BE SOLVED: To provide an engineering method and a manufacturing method for polymer cement mortar having explosive fracture resistance, capable of preventing generation of explosive fracture without reducing economical efficiency or workability when receiving fire heating or the like, and provide polymer cement mortar.SOLUTION: When a factor A of following formulae {A=-32.5β+6.00} or {-6.7β+3.42} and a factor B of following formulae {B=-65.0β-8.0} or {B=-13.3β-13.17} are assigned to a relational expression calculating a maximum explosive fracture depth D(mm) by heating in ISO834 standard heating temperature time curve in the case that a polymer cement mortar body represented by the following formula {D=A×α+B} receives fire heating, a solution for the maximum explosive fracture depth D=0 is calculated by following formulae {β=(6.00α-8.00)/(32.5α+65.0)} or {β=(3.42α-13.17)/(6.7α+13.3)} to determine a contamination percentage β of a polypropylene short fiber (vol.%).
【課題】火災加熱等を受けた場合に経済性や施工性を低下させることなく爆裂が生じるのを防止可能な、耐爆裂性能を有するポリマーセメントモルタルの設計方法及び製造方法並びにポリマーセメントモルタルを提供する。【解決手段】次式{Dsp,max=A?α+B}で表されるポリマーセメントモルタル体が火災加熱を受けた場合のISO834・標準加熱温度時間曲線での加熱による最大爆裂深さDsp,max(mm)を求める関係式に、次式{A=−32.5β+6.00}又は{−6.7β+3.42}の係数A及び次式{B=−65.0β−8.0}又は{B=−13.3β−13.17}の係数Bを代入した際に、最大爆裂深さDsp,max=0となる解を次式{β=(6.00α−8.00)/(32.5α+65.0)}又は{β=(3.42α−13.17)/(6.7α+13.3)}で求め、ポリプロピレン短繊維の混入率β(体積%)を算定する。【選択図】なし
ENGINEERING METHOD AND MANUFACTURING METHOD FOR POLYMER CEMENT MORTAR HAVING EXPLOSIVE FRACTURE RESISTANCE AND POLYMER CEMENT MORTAR HAVING EXPLOSIVE FRACTURE RESISTANCE
PROBLEM TO BE SOLVED: To provide an engineering method and a manufacturing method for polymer cement mortar having explosive fracture resistance, capable of preventing generation of explosive fracture without reducing economical efficiency or workability when receiving fire heating or the like, and provide polymer cement mortar.SOLUTION: When a factor A of following formulae {A=-32.5β+6.00} or {-6.7β+3.42} and a factor B of following formulae {B=-65.0β-8.0} or {B=-13.3β-13.17} are assigned to a relational expression calculating a maximum explosive fracture depth D(mm) by heating in ISO834 standard heating temperature time curve in the case that a polymer cement mortar body represented by the following formula {D=A×α+B} receives fire heating, a solution for the maximum explosive fracture depth D=0 is calculated by following formulae {β=(6.00α-8.00)/(32.5α+65.0)} or {β=(3.42α-13.17)/(6.7α+13.3)} to determine a contamination percentage β of a polypropylene short fiber (vol.%).
【課題】火災加熱等を受けた場合に経済性や施工性を低下させることなく爆裂が生じるのを防止可能な、耐爆裂性能を有するポリマーセメントモルタルの設計方法及び製造方法並びにポリマーセメントモルタルを提供する。【解決手段】次式{Dsp,max=A?α+B}で表されるポリマーセメントモルタル体が火災加熱を受けた場合のISO834・標準加熱温度時間曲線での加熱による最大爆裂深さDsp,max(mm)を求める関係式に、次式{A=−32.5β+6.00}又は{−6.7β+3.42}の係数A及び次式{B=−65.0β−8.0}又は{B=−13.3β−13.17}の係数Bを代入した際に、最大爆裂深さDsp,max=0となる解を次式{β=(6.00α−8.00)/(32.5α+65.0)}又は{β=(3.42α−13.17)/(6.7α+13.3)}で求め、ポリプロピレン短繊維の混入率β(体積%)を算定する。【選択図】なし
ENGINEERING METHOD AND MANUFACTURING METHOD FOR POLYMER CEMENT MORTAR HAVING EXPLOSIVE FRACTURE RESISTANCE AND POLYMER CEMENT MORTAR HAVING EXPLOSIVE FRACTURE RESISTANCE
耐爆裂性能を有するポリマーセメントモルタルの設計方法及び製造方法、並びに、耐爆裂性能を有するポリマーセメントモルタル
MORITA TAKESHI (author)
2016-01-12
Patent
Electronic Resource
Japanese
POLYMER CEMENT MORTAR AND METHOD USING POLYMER CEMENT MORTAR
European Patent Office | 2017
|POLYMER CEMENT MORTAR COMPOSITION AND POLYMER CEMENT MORTAR
European Patent Office | 2021
|POLYMER CEMENT MORTAR COMPOSITION AND POLYMER CEMENT MORTAR
European Patent Office | 2019
|POLYMER CEMENT MORTAR COMPOSITION AND POLYMER CEMENT MORTAR
European Patent Office | 2019
|POLYMER CEMENT MORTAR COMPOSITION AND POLYMER CEMENT MORTAR
European Patent Office | 2021
|