A platform for research: civil engineering, architecture and urbanism
METHOD FOR MANUFACTURING LITHIUM COMPOSITE OXIDE SINTERED PLATE FOR LITHIUM SECONDARY BATTERY
PROBLEM TO BE SOLVED: To provide a technique useful for suppressing the reduction in the discharge voltage of a lithium secondary battery in connection with the manufacturing of a lithium composite oxide sintered plate for forming a positive electrode of a lithium secondary battery.SOLUTION: A method for manufacturing a lithium composite oxide sintered plate for a lithium secondary battery comprises: the first step where a lithium cobaltate sintered plate having a thickness of 10 μm or larger, a porosity of 15% or less, and an average pore diameter of 5 μm or less is prepared as a lithium composite oxide sintered plate; and the second step where an organic metal compound liquid solution or fluid dispersion is put on a plate surface of the lithium cobaltate sintered plate prepared in the first step, thereby impregnating it into the sintered plate and then, the thermal decomposition of the organic metal compound is caused at a thermal treatment temperature of 300°C or higher.SELECTED DRAWING: Figure 3
【課題】リチウム二次電池の正極を構成するリチウム複合酸化物焼結板の製造に関し、リチウム二次電池の放電電圧の低下を抑えるのに有効な技術を提供する。【解決手段】リチウム二次電池用リチウム複合酸化物焼結板の製造方法は、厚さが10μm以上であり、空隙率が15%以下であり、平均気孔径が5μm以下であるリチウム複合酸化物焼結板としてのコバルト酸リチウム焼結板を準備する第1ステップと、第1ステップで準備したコバルト酸リチウム焼結板の板表面に有機金属化合物の溶液若しくは分散液を付加して含浸させた後に、この有機金属化合物を300℃以上の熱処理温度で熱分解する第2ステップとを含む。【選択図】図3
METHOD FOR MANUFACTURING LITHIUM COMPOSITE OXIDE SINTERED PLATE FOR LITHIUM SECONDARY BATTERY
PROBLEM TO BE SOLVED: To provide a technique useful for suppressing the reduction in the discharge voltage of a lithium secondary battery in connection with the manufacturing of a lithium composite oxide sintered plate for forming a positive electrode of a lithium secondary battery.SOLUTION: A method for manufacturing a lithium composite oxide sintered plate for a lithium secondary battery comprises: the first step where a lithium cobaltate sintered plate having a thickness of 10 μm or larger, a porosity of 15% or less, and an average pore diameter of 5 μm or less is prepared as a lithium composite oxide sintered plate; and the second step where an organic metal compound liquid solution or fluid dispersion is put on a plate surface of the lithium cobaltate sintered plate prepared in the first step, thereby impregnating it into the sintered plate and then, the thermal decomposition of the organic metal compound is caused at a thermal treatment temperature of 300°C or higher.SELECTED DRAWING: Figure 3
【課題】リチウム二次電池の正極を構成するリチウム複合酸化物焼結板の製造に関し、リチウム二次電池の放電電圧の低下を抑えるのに有効な技術を提供する。【解決手段】リチウム二次電池用リチウム複合酸化物焼結板の製造方法は、厚さが10μm以上であり、空隙率が15%以下であり、平均気孔径が5μm以下であるリチウム複合酸化物焼結板としてのコバルト酸リチウム焼結板を準備する第1ステップと、第1ステップで準備したコバルト酸リチウム焼結板の板表面に有機金属化合物の溶液若しくは分散液を付加して含浸させた後に、この有機金属化合物を300℃以上の熱処理温度で熱分解する第2ステップとを含む。【選択図】図3
METHOD FOR MANUFACTURING LITHIUM COMPOSITE OXIDE SINTERED PLATE FOR LITHIUM SECONDARY BATTERY
リチウム二次電池用リチウム複合酸化物焼結板の製造方法
OHIRA NAOTO (author) / YURA YUKINOBU (author) / KOBAYASHI NOBUYUKI (author)
2016-08-25
Patent
Electronic Resource
Japanese
IPC:
H01M
Verfahren oder Mittel, z.B. Batterien, für die direkte Umwandlung von chemischer in elektrische Energie
,
PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
/
C01G
Verbindungen der von den Unterklassen C01D oder C01F nicht umfassten Metalle
,
COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
/
C04B
Kalk
,
LIME
LITHIUM COMPOSITE OXIDE SINTERED BODY PLATE AND LITHIUM SECONDARY BATTERY
European Patent Office | 2018
|LITHIUM COMPOSITE OXIDE SINTERED BODY PLATE AND LITHIUM SECONDARY BATTERY
European Patent Office | 2023
|LITHIUM COMPOSITE OXIDE SINTERED PLATE AND ALL-SOLID-STATE SECONDARY BATTERY
European Patent Office | 2024
|