A platform for research: civil engineering, architecture and urbanism
METHOD FOR PRODUCING CONDUCTIVE SILICON CARBIDE-BASED SINTERED BODY AND CONDUCTIVE SILICON CARBIDE-BASED SINTERED BODY
To provide a method for producing a conductive silicon carbide-based sintered body, in which: variation of resistivity associated with oxidization is suppressed; and a ratio of a β-type silicon carbide is made larger to reduce temperature dependency of the resistivity.SOLUTION: A sintered body is formed of a starting material comprising a raw material of a conductive phase, the silicon carbide-based conductive phase, wherein the raw material comprises nitride as a dopant. The sintered body is produced, in which variation of resistivity associated with oxidization is smaller than a sintered body having no high-resistance phase by forming the high-resistance phase on at least an external surface of the sintered body, the high-resistance phase being the silicon carbide-based conductive phase in which nitride density is lower than an average nitride density of the conductive phase. By making the starting material comprise the β-type aggregate, the coarse particles that comprise a β-type conductive silicon carbide and have a particle diameter of 5-50 μm, a ratio of a β-type silicon carbide in the whole sintered body is changed to vary temperature dependency of the resistivity; and the ratio of the β-type silicon carbide in the high-resistance phase is made larger than a sintered body formed of a starting material that does not comprise a β-type aggregate.SELECTED DRAWING: Figure 1
【課題】酸化による比抵抗値の変化を抑制すると共に、β型炭化珪素の割合をより高めることによって比抵抗値の温度依存性をより低減することができる導電性炭化珪素質焼結体の製造方法を提供する。【解決手段】ドーパントとして窒素を含む炭化珪素の相である導電性相の原料を含む出発原料から形成された焼結体の少なくとも外表面に、導電性相における窒素の平均濃度より窒素の濃度が低い炭化珪素の相である高抵抗相を形成することにより、酸化に伴う比抵抗値の変化が高抵抗相のない焼結体に比べて小さい焼結体を製造すると共に、出発原料に導電性のβ型炭化珪素からなり粒子径が5μm〜50μmの粗大粒子であるβ型骨材を含有させることにより、焼結体全体におけるβ型炭化珪素の割合を変化せて比抵抗値の温度依存性を異ならせると共に、β型骨材を含有しない出発原料から形成された焼結体に比べて高抵抗相におけるβ型炭化珪素の割合を増大させる。【選択図】図1
METHOD FOR PRODUCING CONDUCTIVE SILICON CARBIDE-BASED SINTERED BODY AND CONDUCTIVE SILICON CARBIDE-BASED SINTERED BODY
To provide a method for producing a conductive silicon carbide-based sintered body, in which: variation of resistivity associated with oxidization is suppressed; and a ratio of a β-type silicon carbide is made larger to reduce temperature dependency of the resistivity.SOLUTION: A sintered body is formed of a starting material comprising a raw material of a conductive phase, the silicon carbide-based conductive phase, wherein the raw material comprises nitride as a dopant. The sintered body is produced, in which variation of resistivity associated with oxidization is smaller than a sintered body having no high-resistance phase by forming the high-resistance phase on at least an external surface of the sintered body, the high-resistance phase being the silicon carbide-based conductive phase in which nitride density is lower than an average nitride density of the conductive phase. By making the starting material comprise the β-type aggregate, the coarse particles that comprise a β-type conductive silicon carbide and have a particle diameter of 5-50 μm, a ratio of a β-type silicon carbide in the whole sintered body is changed to vary temperature dependency of the resistivity; and the ratio of the β-type silicon carbide in the high-resistance phase is made larger than a sintered body formed of a starting material that does not comprise a β-type aggregate.SELECTED DRAWING: Figure 1
【課題】酸化による比抵抗値の変化を抑制すると共に、β型炭化珪素の割合をより高めることによって比抵抗値の温度依存性をより低減することができる導電性炭化珪素質焼結体の製造方法を提供する。【解決手段】ドーパントとして窒素を含む炭化珪素の相である導電性相の原料を含む出発原料から形成された焼結体の少なくとも外表面に、導電性相における窒素の平均濃度より窒素の濃度が低い炭化珪素の相である高抵抗相を形成することにより、酸化に伴う比抵抗値の変化が高抵抗相のない焼結体に比べて小さい焼結体を製造すると共に、出発原料に導電性のβ型炭化珪素からなり粒子径が5μm〜50μmの粗大粒子であるβ型骨材を含有させることにより、焼結体全体におけるβ型炭化珪素の割合を変化せて比抵抗値の温度依存性を異ならせると共に、β型骨材を含有しない出発原料から形成された焼結体に比べて高抵抗相におけるβ型炭化珪素の割合を増大させる。【選択図】図1
METHOD FOR PRODUCING CONDUCTIVE SILICON CARBIDE-BASED SINTERED BODY AND CONDUCTIVE SILICON CARBIDE-BASED SINTERED BODY
導電性炭化珪素質焼結体の製造方法及び導電性炭化珪素質焼結体
YAMADA TOMOYUKI (author) / SEIKI SUSUMU (author)
2018-11-01
Patent
Electronic Resource
Japanese
IPC:
C04B
Kalk
,
LIME
European Patent Office | 2017
|European Patent Office | 2016
|