A platform for research: civil engineering, architecture and urbanism
Garnet-type ion-conducting oxide and method for producing oxide electrolyte sintered body
A garnet-type ion-conducting oxide configured to inhibit lithium carbonate formation on the surface of crystal particles thereof, and a method for producing an oxide electrolyte sintered body using the garnet-type ion-conducting oxide. The garnet-type ion-conducting oxide represented by a general formula (Lix-3y-z, Ey, Hz)LαMβOγ (where E is at least one kind of element selected from the group consisting of Al, Ga, Fe and Si; L is at least one kind of element selected from an alkaline-earth metal and a lanthanoid element: M is at least one kind of element selected from a transition element which be six-coordinated with oxygen and typical elements in groups 12 to 15 of the periodic table; 3≤x−3y−z≤; 0≤y≤0.22; C≤z≤2.8; 2.5≤α≤3.5; 1.5≤≈≤2.5; and 11≤γ≤13), wherein a half-width of a diffraction peak which has a highest intensity and which is observed at a diffraction angle (2θ) in a range of from 29° to 32° as a result of X-ray diffraction measurement using CuKα radiation, is 0.164° or less.
Garnet-type ion-conducting oxide and method for producing oxide electrolyte sintered body
A garnet-type ion-conducting oxide configured to inhibit lithium carbonate formation on the surface of crystal particles thereof, and a method for producing an oxide electrolyte sintered body using the garnet-type ion-conducting oxide. The garnet-type ion-conducting oxide represented by a general formula (Lix-3y-z, Ey, Hz)LαMβOγ (where E is at least one kind of element selected from the group consisting of Al, Ga, Fe and Si; L is at least one kind of element selected from an alkaline-earth metal and a lanthanoid element: M is at least one kind of element selected from a transition element which be six-coordinated with oxygen and typical elements in groups 12 to 15 of the periodic table; 3≤x−3y−z≤; 0≤y≤0.22; C≤z≤2.8; 2.5≤α≤3.5; 1.5≤≈≤2.5; and 11≤γ≤13), wherein a half-width of a diffraction peak which has a highest intensity and which is observed at a diffraction angle (2θ) in a range of from 29° to 32° as a result of X-ray diffraction measurement using CuKα radiation, is 0.164° or less.
Garnet-type ion-conducting oxide and method for producing oxide electrolyte sintered body
OHTA SHINGO (author)
2022-03-01
Patent
Electronic Resource
English
IPC:
H01M
Verfahren oder Mittel, z.B. Batterien, für die direkte Umwandlung von chemischer in elektrische Energie
,
PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
/
C01G
Verbindungen der von den Unterklassen C01D oder C01F nicht umfassten Metalle
,
COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
/
C04B
Kalk
,
LIME
METHOD FOR PRODUCING AN OXIDE ELECTROLYTE SINTERED BODY OF GARNET-TYPE
European Patent Office | 2021
|Garnet-Type Oxide Sintered Body and Method for Producing Same
European Patent Office | 2018
|GARNET-TYPE OXIDE SINTERED BODY AND METHOD FOR PRODUCING SAME
European Patent Office | 2017
|Garnet-type oxide sintered body and method for producing same
European Patent Office | 2019
|European Patent Office | 2019
|