A platform for research: civil engineering, architecture and urbanism
Method of making hard-carbon composite material
A method is described to make a metal-containing non-amorphous hard-carbon composite material that is synthesized from furan-ring containing compounds. The metals described in the process include lithium and transition metals, including transition metal oxides like lithium titanates. The non-amorphous hard-carbon component of the metal-containing non-amorphous hard-carbon composite material is characterized by a d002 peak—in the X-ray diffraction patterns—that corresponds to an interlayer spacing of >3.6 Å, along with a prominent D-band peak in the Raman spectra. These metal-containing hard-carbon composites are used for constructing electrodes for Li-ion batteries and Li-ion capacitors.
Method of making hard-carbon composite material
A method is described to make a metal-containing non-amorphous hard-carbon composite material that is synthesized from furan-ring containing compounds. The metals described in the process include lithium and transition metals, including transition metal oxides like lithium titanates. The non-amorphous hard-carbon component of the metal-containing non-amorphous hard-carbon composite material is characterized by a d002 peak—in the X-ray diffraction patterns—that corresponds to an interlayer spacing of >3.6 Å, along with a prominent D-band peak in the Raman spectra. These metal-containing hard-carbon composites are used for constructing electrodes for Li-ion batteries and Li-ion capacitors.
Method of making hard-carbon composite material
MITRA SHANTANU (author) / NAIR VINOD (author)
2023-11-28
Patent
Electronic Resource
English
IPC:
C01B
NON-METALLIC ELEMENTS
,
Nichtmetallische Elemente
/
C04B
Kalk
,
LIME
/
H01G
Kondensatoren
,
CAPACITORS
/
H01M
Verfahren oder Mittel, z.B. Batterien, für die direkte Umwandlung von chemischer in elektrische Energie
,
PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY