A platform for research: civil engineering, architecture and urbanism
Disclosed is a sintered porous material with stronger corrosion resistance and a filter element using same. The sintered porous material of the present application has following features: a) it mainly consists of three elements of Ti, Si and C, and the total weight of the three elements accounts for at least 90% of the weight of the sintered porous material, wherein Ti is 60-75% of the total weight of Ti, Si and C, and Si is 10-20% of the total weight of Ti, Si and C; b) C in the sintered porous material is mainly present in the form of the Ti3SiC2 ternary MAX phase compound, and is almost uniformly dispersed in the porous material; c) the porous material has porosity of 30-60%, average pore size of 0.5-50 μm, tensile strength of at least 23 MPa, pure water filtration flux of 1 t/m2·h at least measured under a filtration pressure difference of 0.05 MPa with a thickness of 5 mm at most for the sintered porous material, and a weight loss rate of at most 1.5% after being immersed into a 5 wt. % chlorhydric acid solution at room temperature for 48 days. The sintered porous material of the present invention has the excellent corrosion resistance property.
Disclosed is a sintered porous material with stronger corrosion resistance and a filter element using same. The sintered porous material of the present application has following features: a) it mainly consists of three elements of Ti, Si and C, and the total weight of the three elements accounts for at least 90% of the weight of the sintered porous material, wherein Ti is 60-75% of the total weight of Ti, Si and C, and Si is 10-20% of the total weight of Ti, Si and C; b) C in the sintered porous material is mainly present in the form of the Ti3SiC2 ternary MAX phase compound, and is almost uniformly dispersed in the porous material; c) the porous material has porosity of 30-60%, average pore size of 0.5-50 μm, tensile strength of at least 23 MPa, pure water filtration flux of 1 t/m2·h at least measured under a filtration pressure difference of 0.05 MPa with a thickness of 5 mm at most for the sintered porous material, and a weight loss rate of at most 1.5% after being immersed into a 5 wt. % chlorhydric acid solution at room temperature for 48 days. The sintered porous material of the present invention has the excellent corrosion resistance property.
SINTERED POROUS MATERIAL AND FILTER ELEMENT USING SAME
2016-08-04
Patent
Electronic Resource
English
POROUS SINTERED MATERIAL, AND METHOD FOR PRODUCING POROUS SINTERED MATERIAL
European Patent Office | 2023
|SINTERED MATERIAL, TOOL USING SINTERED MATERIAL, AND SINTERED MATERIAL PRODUCTION METHOD
European Patent Office | 2022
|