A platform for research: civil engineering, architecture and urbanism
COATING METHOD, COATING LAYER, AND TURBINE SHROUD
A coating method includes depositing a slurry including a coarsely particulate ceramic and a finely particulate ceramic on a base material configured with an oxide-based ceramics matrix composite such that a proportion of coarse particles decreases towards a surface of the base material; forming a bond coating by performing a heat treatment on the base material on which the slurry has been deposited; and forming a top coating by thermally spraying a ceramic onto the bond coating. The oxide-based ceramics matrix composite is an alumina silica type oxide-based ceramics matrix composite. The coarsely particulate ceramic and the finely particulate ceramic are alumina-based powder.
COATING METHOD, COATING LAYER, AND TURBINE SHROUD
A coating method includes depositing a slurry including a coarsely particulate ceramic and a finely particulate ceramic on a base material configured with an oxide-based ceramics matrix composite such that a proportion of coarse particles decreases towards a surface of the base material; forming a bond coating by performing a heat treatment on the base material on which the slurry has been deposited; and forming a top coating by thermally spraying a ceramic onto the bond coating. The oxide-based ceramics matrix composite is an alumina silica type oxide-based ceramics matrix composite. The coarsely particulate ceramic and the finely particulate ceramic are alumina-based powder.
COATING METHOD, COATING LAYER, AND TURBINE SHROUD
MATSUMOTO MINEAKI (author) / KURIMURA TAKAYUKI (author) / TAMUGI AZUSA (author) / HANADA TADAYUKI (author)
2020-09-10
Patent
Electronic Resource
English
IPC:
C04B
Kalk
,
LIME