A platform for research: civil engineering, architecture and urbanism
ELECTROMECHANICAL LOCK UTILIZING MAGNETIC FIELD FORCES
Electromechanical lock utilizing magnetic field forces. An actuator is moved (1202) from a locked position (260) to an open position (400) by electric power. In the locked position (260), a permanent magnet arrangement directs (1204) a near magnetic field to block an access control mechanism to rotate, and simultaneously the permanent magnet arrangement attenuates (1206) the near magnetic field towards a far magnetic break-in field originating from outside of the electromechanical lock. In the open position (400), the permanent magnet arrangement directs (1208) a reversed near magnetic field to release the access control mechanism to rotate, and simultaneously the permanent magnet arrangement attenuates (1210) the reversed near magnetic field towards the far magnetic break-in field.
ELECTROMECHANICAL LOCK UTILIZING MAGNETIC FIELD FORCES
Electromechanical lock utilizing magnetic field forces. An actuator is moved (1202) from a locked position (260) to an open position (400) by electric power. In the locked position (260), a permanent magnet arrangement directs (1204) a near magnetic field to block an access control mechanism to rotate, and simultaneously the permanent magnet arrangement attenuates (1206) the near magnetic field towards a far magnetic break-in field originating from outside of the electromechanical lock. In the open position (400), the permanent magnet arrangement directs (1208) a reversed near magnetic field to release the access control mechanism to rotate, and simultaneously the permanent magnet arrangement attenuates (1210) the reversed near magnetic field towards the far magnetic break-in field.
ELECTROMECHANICAL LOCK UTILIZING MAGNETIC FIELD FORCES
TIKKANEN VÄINÖ (author) / ARVOLA MAURI (author)
2020-09-17
Patent
Electronic Resource
English
IPC:
E05B
LOCKS
,
Schlösser