A platform for research: civil engineering, architecture and urbanism
HIGH CAPACITY, LONG CYCLE LIFE BATTERY ANODE MATERIALS, COMPOSITIONS AND METHODS
Polymer derived ceramic (PDC) materials, compositions and methods of making high capacity, long cycle, long life battery anodes to improve the performance of batteries of all types, including but not limited to coin cell batteries, electric vehicle (EV) batteries, hybrid electric vehicle (HEV) batteries, plug-in hybrid electric vehicle (PHEV) batteries, battery electric vehicle (BEV) batteries, lithium cobalt (LCO) batteries, lithium iron (LFP) batteries; and lithium-ion (Li) batteries, and lead acid batteries. Silicon is incorporated in the PDC material at a molecular level when reacting a polymer derived ceramic precursor and a silicon hydride constituent or a silicon alkoxide constituent to form a PDC composition useful as a battery anode material. The resulting battery anode materials increase the specific capacity of a battery measured in milliampere-hours per gram (mAh/g) and increase the life cycle of a battery while minimizing distortion and stress of the anode structure.
HIGH CAPACITY, LONG CYCLE LIFE BATTERY ANODE MATERIALS, COMPOSITIONS AND METHODS
Polymer derived ceramic (PDC) materials, compositions and methods of making high capacity, long cycle, long life battery anodes to improve the performance of batteries of all types, including but not limited to coin cell batteries, electric vehicle (EV) batteries, hybrid electric vehicle (HEV) batteries, plug-in hybrid electric vehicle (PHEV) batteries, battery electric vehicle (BEV) batteries, lithium cobalt (LCO) batteries, lithium iron (LFP) batteries; and lithium-ion (Li) batteries, and lead acid batteries. Silicon is incorporated in the PDC material at a molecular level when reacting a polymer derived ceramic precursor and a silicon hydride constituent or a silicon alkoxide constituent to form a PDC composition useful as a battery anode material. The resulting battery anode materials increase the specific capacity of a battery measured in milliampere-hours per gram (mAh/g) and increase the life cycle of a battery while minimizing distortion and stress of the anode structure.
HIGH CAPACITY, LONG CYCLE LIFE BATTERY ANODE MATERIALS, COMPOSITIONS AND METHODS
EASTER WILLIAM G (author) / HILL ARNOLD (author) / SHERWOOD WALTER (author) / MARCUS KYLE (author)
2020-12-17
Patent
Electronic Resource
English
IPC:
H01M
Verfahren oder Mittel, z.B. Batterien, für die direkte Umwandlung von chemischer in elektrische Energie
,
PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
/
C04B
Kalk
,
LIME
/
C08G
MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
,
Makromolekulare Verbindungen, anders erhalten als durch Reaktionen, an denen nur ungesättigte Kohlenstoff-Kohlenstoff-Bindungen beteiligt sind
British Library Online Contents | 2014
|Hierarchical Fe3O4@NC composites: ultra-long cycle life anode materials for lithium ion batteries
British Library Online Contents | 2018
|British Library Online Contents | 2015
|Porous graphene for high capacity lithium ion battery anode material
British Library Online Contents | 2016
|Controllable Synthesis of Hollow Si Anode for Long-Cycle-Life Lithium-Ion Batteries
British Library Online Contents | 2014
|