A platform for research: civil engineering, architecture and urbanism
COMPOSITE BODY, LITHIUM ION CONDUCTOR, ALL-SOLID STATE LITHIUM ION SECONDARY BATTERY, ELECTRODE SHEET FOR ALL-SOLID STATE LITHIUM ION SECONDARY BATTERY, AND LITHIUM TETRABORATE
According to the present invention, there are provided a composite body that enables the formation of a lithium ion conductor that exhibits good lithium ion conductivity by a pressurization treatment without sintering at a high temperature (about 1,000° C.) while using a lithium-containing oxide having excellent safety and stability, as well as a lithium ion conductor, an all-solid state lithium ion secondary battery, an electrode sheet for an all-solid state lithium ion secondary battery, and lithium tetraborate. The composite body according to the embodiment of the present invention contains a lithium compound having a lithium ion conductivity of 1.0×10−6 S/cm or more at 25° C. and lithium tetraborate that satisfies the following requirement 1.The requirement 1: In a reduced two-body distribution function G(r) obtained from an X-ray total scattering measurement of the lithium tetraborate, a first peak in which a peak top is located in a range where r is 1.43±0.2 Å and a second peak in which a peak top is located in a range where r is 2.40±0.2 Å are present, G(r) of the peak top of the first peak and G(r) of the peak top of the second peak indicate more than 1.0, and an absolute value of G(r) is less than 1.0 in a range where r is more than 5 Å and 10 Å or less.
COMPOSITE BODY, LITHIUM ION CONDUCTOR, ALL-SOLID STATE LITHIUM ION SECONDARY BATTERY, ELECTRODE SHEET FOR ALL-SOLID STATE LITHIUM ION SECONDARY BATTERY, AND LITHIUM TETRABORATE
According to the present invention, there are provided a composite body that enables the formation of a lithium ion conductor that exhibits good lithium ion conductivity by a pressurization treatment without sintering at a high temperature (about 1,000° C.) while using a lithium-containing oxide having excellent safety and stability, as well as a lithium ion conductor, an all-solid state lithium ion secondary battery, an electrode sheet for an all-solid state lithium ion secondary battery, and lithium tetraborate. The composite body according to the embodiment of the present invention contains a lithium compound having a lithium ion conductivity of 1.0×10−6 S/cm or more at 25° C. and lithium tetraborate that satisfies the following requirement 1.The requirement 1: In a reduced two-body distribution function G(r) obtained from an X-ray total scattering measurement of the lithium tetraborate, a first peak in which a peak top is located in a range where r is 1.43±0.2 Å and a second peak in which a peak top is located in a range where r is 2.40±0.2 Å are present, G(r) of the peak top of the first peak and G(r) of the peak top of the second peak indicate more than 1.0, and an absolute value of G(r) is less than 1.0 in a range where r is more than 5 Å and 10 Å or less.
COMPOSITE BODY, LITHIUM ION CONDUCTOR, ALL-SOLID STATE LITHIUM ION SECONDARY BATTERY, ELECTRODE SHEET FOR ALL-SOLID STATE LITHIUM ION SECONDARY BATTERY, AND LITHIUM TETRABORATE
OKUNO YUKIHIRO (author) / SHIRATORI YOSUKE (author) / YASUI SHINTARO (author) / ITOH MITSURU (author)
2023-01-19
Patent
Electronic Resource
English
LITHIUM COMPOSITE OXIDE SINTERED PLATE AND ALL-SOLID-STATE SECONDARY BATTERY
European Patent Office | 2024
|LITHIUM COMPOSITE OXIDE SINTERED BODY PLATE AND LITHIUM SECONDARY BATTERY
European Patent Office | 2023
|LITHIUM COMPOSITE OXIDE SINTERED BODY PLATE AND LITHIUM SECONDARY BATTERY
European Patent Office | 2018
|OXIDE, SOLID ELECTROLYTE AND ALL-SOLID-STATE LITHIUM ION SECONDARY BATTERY
European Patent Office | 2021
|