A platform for research: civil engineering, architecture and urbanism
VIBRATOR AND VIBRATION WAVE MOTOR
A vibrator includes an electromechanical transducer which is a piezoelectric ceramic made of sodium-potassium niobate metal oxides and whose temperature characteristics of a relative permittivity is 500 [ppm/° C.] or less in absolute value in a temperature range from −40° C. to 170° C., wherein excitation of the electromechanical transducer produces a vibration wave. Another vibrator includes an electromechanical transducer which is a piezoelectric ceramic made of sodium-potassium niobate metal oxides and whose temperature characteristics of a relative permittivity is 390 [ppm/° C.] or less in absolute value in a temperature range from 0° C. to 60° C., wherein excitation of the electromechanical transducer produces a vibration wave.
VIBRATOR AND VIBRATION WAVE MOTOR
A vibrator includes an electromechanical transducer which is a piezoelectric ceramic made of sodium-potassium niobate metal oxides and whose temperature characteristics of a relative permittivity is 500 [ppm/° C.] or less in absolute value in a temperature range from −40° C. to 170° C., wherein excitation of the electromechanical transducer produces a vibration wave. Another vibrator includes an electromechanical transducer which is a piezoelectric ceramic made of sodium-potassium niobate metal oxides and whose temperature characteristics of a relative permittivity is 390 [ppm/° C.] or less in absolute value in a temperature range from 0° C. to 60° C., wherein excitation of the electromechanical transducer produces a vibration wave.
VIBRATOR AND VIBRATION WAVE MOTOR
ASHIZAWA TAKATOSHI (author) / WATANABE KAZUTAKA (author) / TAKAHASHI HIROFUMI (author)
2023-07-13
Patent
Electronic Resource
English
European Patent Office | 2022
|Intelligent vibrator based on vibration wave signal regulation and control
European Patent Office | 2022
|