A platform for research: civil engineering, architecture and urbanism
ENGINEERED SELF-HEALING HYDRAULIC-CEMENT CONCRETE BY BIOMIMICRY
Bioinspired chemical additives, coating, and chemical solution useful for enhancing the strength of self-healing hydraulic-cement concrete, comprising of micro/nano/textured dual phobic dot domains, hydrogel polymer, water, mineral oil, and surfactants assembled into micelle emulsion, mixed with cement, water, sand, and aggregates by weight percentage at a mix ratio of from 0.00001/99.9999 to 10.0/90, of which the ratio of water to cement from 0.10 to 0.80 (W/C), the volume fraction of cement for total volume of concrete from 5 to 50%, sand 40% to 90%, and aggregate 40% to 90%, a replacement of cement with cementitious materials from 0.01% to 75%, having an early age of compressive strength over more than 4000 (PSI) within 24 hour, ultimate compressive strength >7500 (PSI) after exposed over one year, gaining a self-healing efficiency over 80(%), contributed to dispersive, hydrogen, ionic chelating interactions, and activated with self-assembling thiol/disulfide plant-based protein fibril's crosslinking bonds.
ENGINEERED SELF-HEALING HYDRAULIC-CEMENT CONCRETE BY BIOMIMICRY
Bioinspired chemical additives, coating, and chemical solution useful for enhancing the strength of self-healing hydraulic-cement concrete, comprising of micro/nano/textured dual phobic dot domains, hydrogel polymer, water, mineral oil, and surfactants assembled into micelle emulsion, mixed with cement, water, sand, and aggregates by weight percentage at a mix ratio of from 0.00001/99.9999 to 10.0/90, of which the ratio of water to cement from 0.10 to 0.80 (W/C), the volume fraction of cement for total volume of concrete from 5 to 50%, sand 40% to 90%, and aggregate 40% to 90%, a replacement of cement with cementitious materials from 0.01% to 75%, having an early age of compressive strength over more than 4000 (PSI) within 24 hour, ultimate compressive strength >7500 (PSI) after exposed over one year, gaining a self-healing efficiency over 80(%), contributed to dispersive, hydrogen, ionic chelating interactions, and activated with self-assembling thiol/disulfide plant-based protein fibril's crosslinking bonds.
ENGINEERED SELF-HEALING HYDRAULIC-CEMENT CONCRETE BY BIOMIMICRY
LIU FEIPENG (author) / LAI YUNING (author)
2023-07-27
Patent
Electronic Resource
English
IPC:
C04B
Kalk
,
LIME
ENGINEERED SELF-HEALING HYDRAULIC-CEMENT CONCRETE BY BIOMIMICRY
European Patent Office | 2024
|Wiley | 2006
|Biomimicry Prevents Mold's Return
British Library Online Contents | 2007
|TIBKAT | 2016
|TIBKAT | 2011
|