A platform for research: civil engineering, architecture and urbanism
LITHIUM-STUFFED GARNET ELECTROLYTES WITH A REDUCED SURFACE DEFECT DENSITY AND METHODS OF MAKING AND USING THE SAME
The disclosure herein relates to rechargeable batteries and solid electrolytes therefore which include lithium-stuffed garnet oxides, for example, in a thin film, pellet, or monolith format wherein the density of defects at a surface or surfaces of the solid electrolyte is less than the density of defects in the bulk. In certain disclosed embodiments, the solid-state anolyte, electrolyte, and catholyte thin films, separators, and monoliths consist essentially of an oxide that conducts Li+ ions. In some examples, the disclosure herein presents new and useful solid electrolytes for solid-state or partially solid-state batteries. In some examples, the disclosure presents new lithium-stuffed garnet solid electrolytes and rechargeable batteries which include these electrolytes as separators between a cathode and a lithium metal anode.
LITHIUM-STUFFED GARNET ELECTROLYTES WITH A REDUCED SURFACE DEFECT DENSITY AND METHODS OF MAKING AND USING THE SAME
The disclosure herein relates to rechargeable batteries and solid electrolytes therefore which include lithium-stuffed garnet oxides, for example, in a thin film, pellet, or monolith format wherein the density of defects at a surface or surfaces of the solid electrolyte is less than the density of defects in the bulk. In certain disclosed embodiments, the solid-state anolyte, electrolyte, and catholyte thin films, separators, and monoliths consist essentially of an oxide that conducts Li+ ions. In some examples, the disclosure herein presents new and useful solid electrolytes for solid-state or partially solid-state batteries. In some examples, the disclosure presents new lithium-stuffed garnet solid electrolytes and rechargeable batteries which include these electrolytes as separators between a cathode and a lithium metal anode.
LITHIUM-STUFFED GARNET ELECTROLYTES WITH A REDUCED SURFACE DEFECT DENSITY AND METHODS OF MAKING AND USING THE SAME
CAO DAVID (author) / CHAO CHENG-CHIEH (author) / CHEN ZHEBO (author) / CHENG LEI (author) / DONNELLY NIALL (author) / HERMANN WES (author) / HOLME TIMOTHY (author) / HUANG TOMMY (author) / KERMAN KIAN (author) / LI YANG (author)
2024-01-04
Patent
Electronic Resource
English
IPC:
H01M
Verfahren oder Mittel, z.B. Batterien, für die direkte Umwandlung von chemischer in elektrische Energie
,
PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
/
C01G
Verbindungen der von den Unterklassen C01D oder C01F nicht umfassten Metalle
,
COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
/
C04B
Kalk
,
LIME
European Patent Office | 2025
|European Patent Office | 2024
|European Patent Office | 2018
|European Patent Office | 2019
|Lithium stuffed garnet setter plates for solid electrolyte fabrication
European Patent Office | 2024
|