A platform for research: civil engineering, architecture and urbanism
Ceramic manufactures
A ceramic body prosthetic implant or prosthetic implant component of a magnesium oxide stabilized transformation toughened zirconia (Mg-TTZ) ceramic can be made by providing a bisqued initial green body of ceramic by providing a powdered ceramic material, which substantially is a monoclinic zirconia having magnesium oxide for a stabilizer, and, without employing a binder additional to the powdered ceramic to do so, compressing the material in its powder form through a cold isostatic press operation to form a raw, pressed initial green body, and then heating the raw, pressed initial green body to a bisque stage to provide the bisqued initial green body. Then, the following further steps are carried out: without embedding the bisqued initial green body of ceramic in an embedding mass, machining the bisqued initial green body to provide a machined, bisqued green ceramic body such that the machined, bisqued green ceramic body has a shape, which is a precursor shape essentially analogous to, being of the same proportions as, the shape of, but larger than, the ceramic portion of a fired predetermined finished ceramic body prosthetic implant or prosthetic implant component; and then firing the machined, bisqued green ceramic body to provide a fired Mg-TTZ ceramic body product, which is the same size and shape or essentially the same size and shape as the ceramic portion of the fired predetermined finished ceramic body prosthetic implant or prosthetic implant component.
Ceramic manufactures
A ceramic body prosthetic implant or prosthetic implant component of a magnesium oxide stabilized transformation toughened zirconia (Mg-TTZ) ceramic can be made by providing a bisqued initial green body of ceramic by providing a powdered ceramic material, which substantially is a monoclinic zirconia having magnesium oxide for a stabilizer, and, without employing a binder additional to the powdered ceramic to do so, compressing the material in its powder form through a cold isostatic press operation to form a raw, pressed initial green body, and then heating the raw, pressed initial green body to a bisque stage to provide the bisqued initial green body. Then, the following further steps are carried out: without embedding the bisqued initial green body of ceramic in an embedding mass, machining the bisqued initial green body to provide a machined, bisqued green ceramic body such that the machined, bisqued green ceramic body has a shape, which is a precursor shape essentially analogous to, being of the same proportions as, the shape of, but larger than, the ceramic portion of a fired predetermined finished ceramic body prosthetic implant or prosthetic implant component; and then firing the machined, bisqued green ceramic body to provide a fired Mg-TTZ ceramic body product, which is the same size and shape or essentially the same size and shape as the ceramic portion of the fired predetermined finished ceramic body prosthetic implant or prosthetic implant component.
Ceramic manufactures
SERAFIN JR LOUIS A (author) / JERRY JR GERALD J (author) / BURLINGAME NICHOLAS H (author)
2017-05-16
Patent
Electronic Resource
English
IPC:
C04B
Kalk
,
LIME
/
A61C
Zahnheilkunde
,
DENTISTRY
/
A61F
FILTERS IMPLANTABLE INTO BLOOD VESSELS
,
Filter in Blutgefäße implantierbar
/
A61L
Verfahren oder Vorrichtungen zum Sterilisieren von Stoffen oder Gegenständen allgemein
,
METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL
/
B28B
Formgeben von Ton oder anderen keramischen Stoffzusammensetzungen, Schlacke oder von Mischungen, die zementartiges Material enthalten, z.B. Putzmörtel
,
SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS, SLAG OR MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
Online Contents | 1993
Online Contents | 1997
Online Contents | 1994