A platform for research: civil engineering, architecture and urbanism
Transforming Smart Cities with Spatial Computing
Spatial methods have a rich history of reforming city infrastructure. For example, John Snow’s 1854 London Cholera map spurred cities to protect drinking water via sewer systems and to increase green spaces for public health. Today, geospatial data and mapping are among the technologies that cities use the most due to strategic (e.g., long-term planning, land-use), tactical (e.g., property tax, site selection, asset tracking) and operational (e.g., E-911, situation awareness, gunshot location) use cases. Moreover, they (e.g., Google Maps) help citizens navigate, drones stay clear of restricted spaces (e.g., airports, NFL games), and sharing-economy (e.g., Uber) match consumers with nearby providers. Future spatial computing opportunities for smart cities are even more compelling. GIS promises to help re-imagine, redesign, see, and compare alternative infrastructure futures to address risks (e.g., climate change, rising inequality, population growth) and opportunities (e.g., autonomous vehicles, distributed energy production). This paper surveys recent spatial computing accomplishments and identifies research needs for smart-city use-cases.
Transforming Smart Cities with Spatial Computing
Spatial methods have a rich history of reforming city infrastructure. For example, John Snow’s 1854 London Cholera map spurred cities to protect drinking water via sewer systems and to increase green spaces for public health. Today, geospatial data and mapping are among the technologies that cities use the most due to strategic (e.g., long-term planning, land-use), tactical (e.g., property tax, site selection, asset tracking) and operational (e.g., E-911, situation awareness, gunshot location) use cases. Moreover, they (e.g., Google Maps) help citizens navigate, drones stay clear of restricted spaces (e.g., airports, NFL games), and sharing-economy (e.g., Uber) match consumers with nearby providers. Future spatial computing opportunities for smart cities are even more compelling. GIS promises to help re-imagine, redesign, see, and compare alternative infrastructure futures to address risks (e.g., climate change, rising inequality, population growth) and opportunities (e.g., autonomous vehicles, distributed energy production). This paper surveys recent spatial computing accomplishments and identifies research needs for smart-city use-cases.
Transforming Smart Cities with Spatial Computing
Xie, Yiqun (author) / Gupta, Jayant (author) / Li, Yan (author) / Shekhar, Shashi (author)
2018-09-01
1450523 byte
Conference paper
Electronic Resource
English
TIBKAT | 2014
|Reviews - Transforming cities: Contested governance and new spatial divisions
Online Contents | 1999
|