A platform for research: civil engineering, architecture and urbanism
Measuring cycle riding comfort in Southampton using an instrumented bicycle
The increased environmental awareness and the rising fuel costs make bicycles a more and more attractive mode of travel for short journeys. Considering the future prospect of this mode of transportation and the great advantages that it offers in terms of space consumption, health and environmental sustainability, several city authorities worldwide are presently undertaking schemes aiming at improving cycling infrastructure. The aim of the present study is to monitor the impact of such schemes on the riding comfort of cyclists, as expressed by the, usually lower, quantity and magnitude of vibrations occurring as a result of cycling over pavement defects. Millbrook Road East in the western edge of the city center of Southampton is used as a case study, where vibration measurements are taken by means of an instrumented bicycle during periods before and after a redevelopment scheme involving the resurfacing of the road pavement. The results show a clear overall improvement in cycling comfort post-redevelopment, with statistically significant reductions in both the number of high severity vibrations and of their magnitude in "typical" cycling trips taken on the road. However, instances of finishing "snags" in some parts of the surface appear to introduce new minor defects (e.g. around manholes) that are not visible to the naked eye, and these still have some negative effect on the riding experience. Moreover, the study highlights the detrimental impact that widespread pavement defects can have on riding comfort, which affect cyclists of all ages, abilities and styles.
Measuring cycle riding comfort in Southampton using an instrumented bicycle
The increased environmental awareness and the rising fuel costs make bicycles a more and more attractive mode of travel for short journeys. Considering the future prospect of this mode of transportation and the great advantages that it offers in terms of space consumption, health and environmental sustainability, several city authorities worldwide are presently undertaking schemes aiming at improving cycling infrastructure. The aim of the present study is to monitor the impact of such schemes on the riding comfort of cyclists, as expressed by the, usually lower, quantity and magnitude of vibrations occurring as a result of cycling over pavement defects. Millbrook Road East in the western edge of the city center of Southampton is used as a case study, where vibration measurements are taken by means of an instrumented bicycle during periods before and after a redevelopment scheme involving the resurfacing of the road pavement. The results show a clear overall improvement in cycling comfort post-redevelopment, with statistically significant reductions in both the number of high severity vibrations and of their magnitude in "typical" cycling trips taken on the road. However, instances of finishing "snags" in some parts of the surface appear to introduce new minor defects (e.g. around manholes) that are not visible to the naked eye, and these still have some negative effect on the riding experience. Moreover, the study highlights the detrimental impact that widespread pavement defects can have on riding comfort, which affect cyclists of all ages, abilities and styles.
Measuring cycle riding comfort in Southampton using an instrumented bicycle
Miah, Shahjahan (author) / Kaparias, Ioannis (author) / Ayub, Naumana (author) / Milonidis, Efstathios (author) / Holmes, Wade (author)
2019-06-01
1523486 byte
Conference paper
Electronic Resource
English
Cycling comfort evaluation with instrumented probe bicycle
Elsevier | 2019
|Simulation of Bicycle-Riding Smoothness by Bicycle Motion Analysis Model
Online Contents | 2015
|Simulation of Bicycle-Riding Smoothness by Bicycle Motion Analysis Model
Online Contents | 2015
|