A platform for research: civil engineering, architecture and urbanism
Opportunities and challenges in assessing climate change impacts on wind energy—a critical comparison of wind speed projections in California
Future climate change is expected to alter the spatial and temporal distribution of surface wind speeds (SWS), with associated impacts on electricity generation from wind energy. However, the predictions for the direction and magnitude of these changes hinge critically on the assessment methods used. Many climate change impact analyses, including those focused on wind energy, use individual climate models and/or statistical downscaling methods rooted in historical observations. Such studies may individually suggest an unrealistically high level of scientific certainty due to the absence of competing projections (over the same region, time period, etc). A new public data archive, the North American Regional Climate Change Assessment Program (NARCCAP), allows for a more comprehensive perspective on regional climate change impacts, here applied to three wind farm sites in California.
We employ NARCCAP regional climate model data to estimate changes in SWS expected to occur in the mid-21st century at three wind farm regions: Altamont Pass, San Gorgonio Pass, and Tehachapi Pass. We examined trends in SWS magnitude and frequency using three different global/regional model pairs, focused on model evaluation, seasonal cycle, and long-term trends. Our results, while specific to California, highlight the opportunities and limitations in NARCCAP and other publicly available meteorological data sets for energy analysis, and the importance of using multiple models for climate change impact assessment. Although spatial patterns in current wind conditions agree fairly well among models and with NARR (North American Regional Reanalysis) data, results vary widely at our three sites of interest. This poor performance and model disagreement may be explained by complex topography, limited model resolution, and differences in model physics. Spatial trends and site-specific estimates of annual average changes (1980–2000 versus 2051–71) also differed widely across models. All models predicted changes of < 2% at each site, but the direction of the change varies. However, decreases of < 2% in resources at Altamont Pass are agreed upon by each NARCCAP model used. This lack of model agreement suggests uncertainty in future changes, and a potentially high degree of risk for future investors in wind-generated electricity. More broadly, our study highlights the need for multiple calculation approaches to help distinguish between robust and method-dependent results.
Opportunities and challenges in assessing climate change impacts on wind energy—a critical comparison of wind speed projections in California
Future climate change is expected to alter the spatial and temporal distribution of surface wind speeds (SWS), with associated impacts on electricity generation from wind energy. However, the predictions for the direction and magnitude of these changes hinge critically on the assessment methods used. Many climate change impact analyses, including those focused on wind energy, use individual climate models and/or statistical downscaling methods rooted in historical observations. Such studies may individually suggest an unrealistically high level of scientific certainty due to the absence of competing projections (over the same region, time period, etc). A new public data archive, the North American Regional Climate Change Assessment Program (NARCCAP), allows for a more comprehensive perspective on regional climate change impacts, here applied to three wind farm sites in California.
We employ NARCCAP regional climate model data to estimate changes in SWS expected to occur in the mid-21st century at three wind farm regions: Altamont Pass, San Gorgonio Pass, and Tehachapi Pass. We examined trends in SWS magnitude and frequency using three different global/regional model pairs, focused on model evaluation, seasonal cycle, and long-term trends. Our results, while specific to California, highlight the opportunities and limitations in NARCCAP and other publicly available meteorological data sets for energy analysis, and the importance of using multiple models for climate change impact assessment. Although spatial patterns in current wind conditions agree fairly well among models and with NARR (North American Regional Reanalysis) data, results vary widely at our three sites of interest. This poor performance and model disagreement may be explained by complex topography, limited model resolution, and differences in model physics. Spatial trends and site-specific estimates of annual average changes (1980–2000 versus 2051–71) also differed widely across models. All models predicted changes of < 2% at each site, but the direction of the change varies. However, decreases of < 2% in resources at Altamont Pass are agreed upon by each NARCCAP model used. This lack of model agreement suggests uncertainty in future changes, and a potentially high degree of risk for future investors in wind-generated electricity. More broadly, our study highlights the need for multiple calculation approaches to help distinguish between robust and method-dependent results.
Opportunities and challenges in assessing climate change impacts on wind energy—a critical comparison of wind speed projections in California
Opportunities and challenges in assessing climate change impacts on wind energy—a critical comparison of wind speed projections in California
D J Rasmussen (author) / T Holloway (author) / G F Nemet (author)
Environmental Research Letters ; 6 ; 024008
2011-04-01
9 pages
Article (Journal)
Electronic Resource
English
Opportunities and challenges for a floating offshore wind market in California
BASE | 2017
|American Institute of Physics | 2019
|An Ensemble Framework to Investigate Wind Energy Sustainability Considering Climate Change Impacts
DOAJ | 2020
|