A platform for research: civil engineering, architecture and urbanism
Can warming particles enter global climate discussions?
'Soot' or 'black carbon', which comes from incomplete combustion, absorbs light and warms the atmosphere. Although there have been repeated suggestions that reduction of black carbon could be a viable part of decreasing global warming, it has not yet been considered when choosing actions to reduce climatic impact. In this paper, I examine four conceptual barriers to the consideration of aerosols in global agreements. I conclude that some of the major objections to considering aerosols under hemispheric or global agreements are illusory because: (1) a few major sources will be addressed by local regulations, but the remainder may not be addressed by traditional air quality management; (2) climate forcing by carbon particles is not limited to 'hot spots'—about 90% of it occurs at relatively low concentrations; (3) while aerosol science is complex, the most salient characteristics of aerosol behavior can be condensed into tractable metrics including, but not limited to, the global warming potential; (4) despite scientific uncertainties, reducing all aerosols from major sources of black carbon will reduce direct climate warming with a very high probability. This change in climate forcing accounts for at least 25% of the accompanying CO2 forcing with significant probability (25% for modern diesel engines, 90% for superemitting diesels, and 55% for cooking with biofuels). Thus, this fraction of radiative forcing should not be ignored.
Can warming particles enter global climate discussions?
'Soot' or 'black carbon', which comes from incomplete combustion, absorbs light and warms the atmosphere. Although there have been repeated suggestions that reduction of black carbon could be a viable part of decreasing global warming, it has not yet been considered when choosing actions to reduce climatic impact. In this paper, I examine four conceptual barriers to the consideration of aerosols in global agreements. I conclude that some of the major objections to considering aerosols under hemispheric or global agreements are illusory because: (1) a few major sources will be addressed by local regulations, but the remainder may not be addressed by traditional air quality management; (2) climate forcing by carbon particles is not limited to 'hot spots'—about 90% of it occurs at relatively low concentrations; (3) while aerosol science is complex, the most salient characteristics of aerosol behavior can be condensed into tractable metrics including, but not limited to, the global warming potential; (4) despite scientific uncertainties, reducing all aerosols from major sources of black carbon will reduce direct climate warming with a very high probability. This change in climate forcing accounts for at least 25% of the accompanying CO2 forcing with significant probability (25% for modern diesel engines, 90% for superemitting diesels, and 55% for cooking with biofuels). Thus, this fraction of radiative forcing should not be ignored.
Can warming particles enter global climate discussions?
Can warming particles enter global climate discussions?
Tami C Bond (author)
Environmental Research Letters ; 2 ; 045030
2007-10-01
9 pages
Article (Journal)
Electronic Resource
English
Wiley | 1992
|Global warming: a changing climate for hydro
Online Contents | 1993
|Coping with Global Warming and Climate Change
British Library Online Contents | 2008
|Coping with Global Warming and Climate Change
Online Contents | 2008
|Relationship of corrosion with global warming and climate change
British Library Online Contents | 2010