A platform for research: civil engineering, architecture and urbanism
Survey of Radon and Radon Daughter Concentrations in Selected Rainier Mesa Tunnels
A survey of radon and radon daughter concentrations (RDCs) in selected tunnels on Rainier Mesa at the Nevada Test Site (NTS) was conducted as a part of the underground testing program at NTS. Measurements were taken in three tunnels, N, T, and G. Results of preliminary measurements indicate that N and T Tunnels have low RDCs, i.e., 0.01 WL (working level) (3% of the EPA standard), with normal ventilation conditions. However, it was demonstrated that RDCs can rise to relatively high levels, i.e., 0.24 WL when ventilation rates are significantly lowered. The radon daughter concentrations measured in G Tunnel were an order of magnitude higher than those in N and T Tunnels. The average RDC in the rock mechanics drift (the ''worst-case'' location in G Tunnel) was 0.13 WL with a range from 0.07 WL to 0.23 WL. Elevated RDCs found in the rock mechanics drift of G Tunnel seemed to be attributable to a lower ventilation rate in conjunction with the more highly fractured nature of the ''welded tuff'' rock formation in which the incline drift was mined. By increasing the ventilation rate, a 60% reduction in RDCs from an average of 0.13 Wl to an average of 0.05 WL was achieved. (ERA citation 12:019065)
Survey of Radon and Radon Daughter Concentrations in Selected Rainier Mesa Tunnels
A survey of radon and radon daughter concentrations (RDCs) in selected tunnels on Rainier Mesa at the Nevada Test Site (NTS) was conducted as a part of the underground testing program at NTS. Measurements were taken in three tunnels, N, T, and G. Results of preliminary measurements indicate that N and T Tunnels have low RDCs, i.e., 0.01 WL (working level) (3% of the EPA standard), with normal ventilation conditions. However, it was demonstrated that RDCs can rise to relatively high levels, i.e., 0.24 WL when ventilation rates are significantly lowered. The radon daughter concentrations measured in G Tunnel were an order of magnitude higher than those in N and T Tunnels. The average RDC in the rock mechanics drift (the ''worst-case'' location in G Tunnel) was 0.13 WL with a range from 0.07 WL to 0.23 WL. Elevated RDCs found in the rock mechanics drift of G Tunnel seemed to be attributable to a lower ventilation rate in conjunction with the more highly fractured nature of the ''welded tuff'' rock formation in which the incline drift was mined. By increasing the ventilation rate, a 60% reduction in RDCs from an average of 0.13 Wl to an average of 0.05 WL was achieved. (ERA citation 12:019065)
Survey of Radon and Radon Daughter Concentrations in Selected Rainier Mesa Tunnels
D. N. Fauver (author)
1987
24 pages
Report
No indication
English
Elsevier | 1994
|NTIS | 1989
|British Library Conference Proceedings | 1981
|