A platform for research: civil engineering, architecture and urbanism
Implementation of Mechanistic Pavement Design: Field and Laboratory Implementation
One of the most important parameters needed for 2002 Mechanistic Pavement Design Guide is the dynamic modulus (E*). The dynamic modulus (E*) describes the relationship between stress and strain for a linear viscoelastic material. The E* is the prime material parameter used for calculating both rutting and fatigue cracking in hot mix asphalt. The parameter is traditionally measured in the laboratory under an axial compressive type testing condition. Under the recommendations of the 2002 Mechanistic Design Guide, this is the preferred method for reconstruction or new construction. However, if a rehabilitation is to be conducted, the 2002 Mechanistic Design Guide prefers the use of the Falling Weight Deflectometer (FWD) because of its capability of determining the E* parameter in-situ and in a non-destructive way. Unfortunately, this is not 100% true since most PMS procedures require that cores of the pavement be taken so accurate layer thickness' can be determined for back-calculation purposes. If FWD testing is not available, then the 2002 Mechanistic Design Guide recommends using the laboratory testing of cores from the pavement.
Implementation of Mechanistic Pavement Design: Field and Laboratory Implementation
One of the most important parameters needed for 2002 Mechanistic Pavement Design Guide is the dynamic modulus (E*). The dynamic modulus (E*) describes the relationship between stress and strain for a linear viscoelastic material. The E* is the prime material parameter used for calculating both rutting and fatigue cracking in hot mix asphalt. The parameter is traditionally measured in the laboratory under an axial compressive type testing condition. Under the recommendations of the 2002 Mechanistic Design Guide, this is the preferred method for reconstruction or new construction. However, if a rehabilitation is to be conducted, the 2002 Mechanistic Design Guide prefers the use of the Falling Weight Deflectometer (FWD) because of its capability of determining the E* parameter in-situ and in a non-destructive way. Unfortunately, this is not 100% true since most PMS procedures require that cores of the pavement be taken so accurate layer thickness' can be determined for back-calculation purposes. If FWD testing is not available, then the 2002 Mechanistic Design Guide recommends using the laboratory testing of cores from the pavement.
Implementation of Mechanistic Pavement Design: Field and Laboratory Implementation
A. Maher (author) / N. Gucunski (author) / T. Bennert (author)
2005
40 pages
Report
No indication
English
Highway Engineering , Construction Equipment, Materials, & Supplies , Transportation , Administration & Management , Road Transportation , Mechanistic pavement design , Implementation , Dynamic modules , Rutting , Fatigue cracking , Hot mix asphalt , Falling weight deflectometer , Falling weight deflectometer (FWD)
Implementation of Mechanistic-Empirical Pavement Design: The South African Perspective
British Library Conference Proceedings | 2006
|