A platform for research: civil engineering, architecture and urbanism
Soil Mechanics Laboratory Failure of Slopes
The dynamic mechanism of slope failure is studied both experimentally and analytically to establish the spatial and temporal process of failure initiation and propagation during collapse of a natural or man-made slope. Model slopes, constructed of a brittle cemented sand material, are tested to collapse in a geotechnical centrifuge and the dynamics of failure recorded by motion picture film and mechanical detectors within the slope specimen. Shear failure is observed to initiate at the toe and propagate rapidly to the crest in the presence of crest tension cracking. A finite difference approach is taken to numerically solve the plane strain slope stability problem under gravity, based on unstable material behavior. Using a Lagrangian differencing scheme in space and explicit integration in time with dynamic relaxation, the numerical method finds the equilibrium state of the slope as the large-time limit of a dynamic problem with artificial parameters. The solution predicts localized shear failure zones which initiate at the slope toe and propagate to the slope crest in the manner and geometry observed in the centrifuge tests.
Soil Mechanics Laboratory Failure of Slopes
The dynamic mechanism of slope failure is studied both experimentally and analytically to establish the spatial and temporal process of failure initiation and propagation during collapse of a natural or man-made slope. Model slopes, constructed of a brittle cemented sand material, are tested to collapse in a geotechnical centrifuge and the dynamics of failure recorded by motion picture film and mechanical detectors within the slope specimen. Shear failure is observed to initiate at the toe and propagate rapidly to the crest in the presence of crest tension cracking. A finite difference approach is taken to numerically solve the plane strain slope stability problem under gravity, based on unstable material behavior. Using a Lagrangian differencing scheme in space and explicit integration in time with dynamic relaxation, the numerical method finds the equilibrium state of the slope as the large-time limit of a dynamic problem with artificial parameters. The solution predicts localized shear failure zones which initiate at the slope toe and propagate to the slope crest in the manner and geometry observed in the centrifuge tests.
Soil Mechanics Laboratory Failure of Slopes
P. B. Burridge (author)
1987
276 pages
Report
No indication
English
The mechanics of surficial failure in soil slopes
British Library Online Contents | 2010
|The mechanics of surficial failure in soil slopes
Online Contents | 2010
|The mechanics of surficial failure in soil slopes
Elsevier | 2010
|MECHANICS OF FAILURE OF SOIL SLOPES LEADING TO ``RAPID'' FAILURE
British Library Conference Proceedings | 2005
|"Rapid" failure of soil slopes
UB Braunschweig | 2001
|