A platform for research: civil engineering, architecture and urbanism
The reuse potential of tire chips as coarse aggregates in pavement concrete was examined in this research by investigating the effects of low- and high-volume tire chips on fresh and hardened concrete properties. One concrete control mixture was designed, which well exceeds CDOT Class P concrete requirements. The coarse aggregate component of the mixture was replaced in 100%, 50%, 30%, 20%, and 10% by volume using tire chips. The fresh concrete properties, compressive strength, flexural strength, splitting strength, permeability, and freeze/thaw durability were tested in the lab to evaluate the potential of including tire chips in concrete paving mixes. The testing results indicate tire chips can be used to replace coarse aggregate in concrete pavement mixtures. Two mixtures with 10% coarse aggregate replaced by tire chips had the best performance. The workability was comparable to the control mixture, and the air content reached 6%. At 28 days of age, the average compressive strength of the two mixtures was significantly less than the control but still exceeded CDOTs specification of 4200 psi; the averaged flexural and splitting tensile strengths were higher than 900 psi and 590 psi respectively. In addition, the two mixtures exhibited moderate resistance to chloride-ion penetration at 28 days of age and high freeze/thaw durability. The rubberized mixtures investigated in this study sustained a much higher deformation than the control mixture when subjected to compressive, flexural, and splitting loadings.
The reuse potential of tire chips as coarse aggregates in pavement concrete was examined in this research by investigating the effects of low- and high-volume tire chips on fresh and hardened concrete properties. One concrete control mixture was designed, which well exceeds CDOT Class P concrete requirements. The coarse aggregate component of the mixture was replaced in 100%, 50%, 30%, 20%, and 10% by volume using tire chips. The fresh concrete properties, compressive strength, flexural strength, splitting strength, permeability, and freeze/thaw durability were tested in the lab to evaluate the potential of including tire chips in concrete paving mixes. The testing results indicate tire chips can be used to replace coarse aggregate in concrete pavement mixtures. Two mixtures with 10% coarse aggregate replaced by tire chips had the best performance. The workability was comparable to the control mixture, and the air content reached 6%. At 28 days of age, the average compressive strength of the two mixtures was significantly less than the control but still exceeded CDOTs specification of 4200 psi; the averaged flexural and splitting tensile strengths were higher than 900 psi and 590 psi respectively. In addition, the two mixtures exhibited moderate resistance to chloride-ion penetration at 28 days of age and high freeze/thaw durability. The rubberized mixtures investigated in this study sustained a much higher deformation than the control mixture when subjected to compressive, flexural, and splitting loadings.
Recycled Tires as Coarse Aggregate in Concrete Pavement Mixtures
R. Liu (author)
2013
47 pages
Report
No indication
English
Highway Engineering , Construction Equipment, Materials, & Supplies , Solid Wastes Pollution & Control , Recycled materials , Waste tires , Scrap tires , Asphalt pavements , Rubberized concrete properties , Construction , Specifications , State transportation agencies , Comparative analysis , Aggregate durability
Waste asphalt pavement coarse aggregate recycled concrete and preparation method thereof
European Patent Office | 2023
|European Patent Office | 2022
|Mechanical Properties of Concrete Pavement Mixtures with Larger Size Coarse Aggregate
British Library Conference Proceedings | 2006
|