A platform for research: civil engineering, architecture and urbanism
Performance of Concrete Backfilling Materials for Shafts and Tunnels in Rock Formations. Volume 1: Concrete Selection and Properties
Preplaced Aggregate Concrete (PAC) consists of graded coarse aggregate, immobilised by cementitious grout injected into the voids. PAC can be considered as a suitable backfill material for mined radioactive waste repositories. PAC is also reported to be amenable to mechanical/remote placement and have usefully improved properties when compared with conventionally placed concretes. In particular reduced shrinkage and heat cycle during cement hydration, higher densities and improved plant economics are claimed. This study attempts to establish the validity of these claims both from reported experience and by practical demonstration through experimentation. A literature study supported the claims made for the PAC system but all reported experiences recorded the use of organic admixtures (workability aids, retarders etc). Because of the lack of long term durability data on such admixtures, especially in a radiation environnement, it was decided to prepare a sample of PAC without organic admixtures. Considerable experimental difficulties were encountered in obtaining a satisfactory quality for test specimens. The necessary grout fluidity was only achieved by the inclusion of bentonite. The test data collected indicates that the PAC system employed did not improve mechanical properties compared with conventional concretes. This is attributed to the non-usage of organic admixtures to achieve the expected performance. Further research on low permeability concretes would require the use of organic admixtures. The effect of radiation on these materials, and their leaching rate needs to be quantified. (ERA citation 12:031157)
Performance of Concrete Backfilling Materials for Shafts and Tunnels in Rock Formations. Volume 1: Concrete Selection and Properties
Preplaced Aggregate Concrete (PAC) consists of graded coarse aggregate, immobilised by cementitious grout injected into the voids. PAC can be considered as a suitable backfill material for mined radioactive waste repositories. PAC is also reported to be amenable to mechanical/remote placement and have usefully improved properties when compared with conventionally placed concretes. In particular reduced shrinkage and heat cycle during cement hydration, higher densities and improved plant economics are claimed. This study attempts to establish the validity of these claims both from reported experience and by practical demonstration through experimentation. A literature study supported the claims made for the PAC system but all reported experiences recorded the use of organic admixtures (workability aids, retarders etc). Because of the lack of long term durability data on such admixtures, especially in a radiation environnement, it was decided to prepare a sample of PAC without organic admixtures. Considerable experimental difficulties were encountered in obtaining a satisfactory quality for test specimens. The necessary grout fluidity was only achieved by the inclusion of bentonite. The test data collected indicates that the PAC system employed did not improve mechanical properties compared with conventional concretes. This is attributed to the non-usage of organic admixtures to achieve the expected performance. Further research on low permeability concretes would require the use of organic admixtures. The effect of radiation on these materials, and their leaching rate needs to be quantified. (ERA citation 12:031157)
Performance of Concrete Backfilling Materials for Shafts and Tunnels in Rock Formations. Volume 1: Concrete Selection and Properties
R. B. J. Casson (author) / I. L. Davies (author)
1986
100 pages
Report
No indication
English
Remote Concrete Spraying in Shafts and Tunnels
British Library Conference Proceedings | 1994
|Remote concrete spraying in shafts and tunnels
Tema Archive | 1992
|