A platform for research: civil engineering, architecture and urbanism
Out-of-plane behavior of hollow clay tile walls infilled between steel frames
Several buildings at Y-12 Plant rely on unreinforced hollow clay tile walls (HCTW) infilled between unbraced, non-moment resisting steel frames to resist natural phenomena forces, seismic and wind. One critical building relies on moment resisting steel frames in one direction while relying on unreinforced HCTWs infilled between the columns in the orthogonal direction to resist these forces. The HCTWs must act as shear walls while maintaining out-of-plane lateral stability. In assessing the safety of these buildings to seismic forces, several models to study the in- and out-of-plane effects were made and analyzed. The study of the moment resisting steel framed building indicated that bending stresses in the walls were induced by building drift and not by inertial forces per se. The discovery of this phenomenon was some what of a surprise in that the analysis performed is not typically used in design of these structures. The study indicated that the walls began to crack at their interface with the foundation at a low ''g'' level and that horizontal cracking at different elevations continued until the walls exhibited little bending resistance. This paper presents results of the study for out-of-plane behavior of unreinforced HCTWs infilled between adjacent moment resisting steel frames and discusses the problems of assessing the in-plane behavior given the horizontal cracks induced by building drift in the out-of-plane direction.
Out-of-plane behavior of hollow clay tile walls infilled between steel frames
Several buildings at Y-12 Plant rely on unreinforced hollow clay tile walls (HCTW) infilled between unbraced, non-moment resisting steel frames to resist natural phenomena forces, seismic and wind. One critical building relies on moment resisting steel frames in one direction while relying on unreinforced HCTWs infilled between the columns in the orthogonal direction to resist these forces. The HCTWs must act as shear walls while maintaining out-of-plane lateral stability. In assessing the safety of these buildings to seismic forces, several models to study the in- and out-of-plane effects were made and analyzed. The study of the moment resisting steel framed building indicated that bending stresses in the walls were induced by building drift and not by inertial forces per se. The discovery of this phenomenon was some what of a surprise in that the analysis performed is not typically used in design of these structures. The study indicated that the walls began to crack at their interface with the foundation at a low ''g'' level and that horizontal cracking at different elevations continued until the walls exhibited little bending resistance. This paper presents results of the study for out-of-plane behavior of unreinforced HCTWs infilled between adjacent moment resisting steel frames and discusses the problems of assessing the in-plane behavior given the horizontal cracks induced by building drift in the out-of-plane direction.
Out-of-plane behavior of hollow clay tile walls infilled between steel frames
M. B. Butala (author) / W. D. Jones (author) / J. E. Beavers (author)
1991
7 pages
Report
No indication
English
Research on Infilled Hollow Clay Tile Walls
British Library Conference Proceedings | 1995
|In-Plane Behavior of Structural Clay Tile Infilled Frames
British Library Online Contents
Experimental testing of hollow clay tile infilled frames
NTIS | 1992
|TECHNICAL PAPERS - In-Plane Behavior of Structural Clay Tile Infilled Frames
Online Contents | 1999
|In-Plane Behaviour and Strength of Structural Clay Tile Infilled Frames
British Library Conference Proceedings | 1993
|