A platform for research: civil engineering, architecture and urbanism
Demonstration of energy savings of cool roofs. Executive summary
The use of dark roofs affects cooling and heating energy use in buildings and the urban climate. At the building scale, dark roofs are heated by the summer sun and thus raise the summertime air-conditioning (a/c) demand. For highly-absorptive (low-albedo) roofs the difference between the surface and ambient air temperatures may be as high as 90 F on a summer afternoon. While for less absorptive (high-albedo) surfaces with similar insulative properties, such as roofs covered with a white coating, the difference is only about 20 F. For this reason, cool roofs (which absorb little insolation) can be effective in reducing cooling energy use. Earlier studies have suggested that cool roofs incur no additional cost if color changes are incorporated into routine re- roofing and re-surfacing schedules. There is a sizable body of measured data (primarily collected for residential sector) documenting energy-saving effects of cool roofs as shown. Both measured data and simulations clearly demonstrate that increasing the albedo of roofs is an attractive (and cost-effective) way of reducing the net radiative heat gains through the roof and hence, reducing building cooling loads. To change the albedo, the rooftops of buildings may be painted with reflective coatings or covered with a new light-colored material. Since most roofs have regular maintenance schedules or need to be re-roofed or re-coated periodically, the change of the albedo should be done then. In that case, the cost would be limited to the incremental cost associated with the high-albedo material. In buildings and climates with significant air- conditioning use, increasing the albedo of roofs will reduce energy use and produce a stream of savings immediately.
Demonstration of energy savings of cool roofs. Executive summary
The use of dark roofs affects cooling and heating energy use in buildings and the urban climate. At the building scale, dark roofs are heated by the summer sun and thus raise the summertime air-conditioning (a/c) demand. For highly-absorptive (low-albedo) roofs the difference between the surface and ambient air temperatures may be as high as 90 F on a summer afternoon. While for less absorptive (high-albedo) surfaces with similar insulative properties, such as roofs covered with a white coating, the difference is only about 20 F. For this reason, cool roofs (which absorb little insolation) can be effective in reducing cooling energy use. Earlier studies have suggested that cool roofs incur no additional cost if color changes are incorporated into routine re- roofing and re-surfacing schedules. There is a sizable body of measured data (primarily collected for residential sector) documenting energy-saving effects of cool roofs as shown. Both measured data and simulations clearly demonstrate that increasing the albedo of roofs is an attractive (and cost-effective) way of reducing the net radiative heat gains through the roof and hence, reducing building cooling loads. To change the albedo, the rooftops of buildings may be painted with reflective coatings or covered with a new light-colored material. Since most roofs have regular maintenance schedules or need to be re-roofed or re-coated periodically, the change of the albedo should be done then. In that case, the cost would be limited to the incremental cost associated with the high-albedo material. In buildings and climates with significant air- conditioning use, increasing the albedo of roofs will reduce energy use and produce a stream of savings immediately.
Demonstration of energy savings of cool roofs. Executive summary
S. Konopacki (author) / L. Gartland (author) / H. Akbari (author) / L. Rainer (author)
1998
10 pages
Report
No indication
English
Demonstration of energy savings of cool roofs
NTIS | 1998
|Building energy savings by green roofs and cool roofs in current and future climates
Springer Verlag | 2024
|Comparison of software models for energy savings from cool roofs
Elsevier | 2015
|Building energy savings by green roofs and cool roofs in current and future climates
DOAJ | 2024
|