A platform for research: civil engineering, architecture and urbanism
Spalling Solution of Precast-Prestressed Bridge Deck Panel
This research has examined spalling of several partial-depth precast prestressed concrete (PPC) bridge decks. It was recently observed that some bridges with this panel system in the MoDOT inventory have experienced rusting of embedded steel reinforcement and concrete spalling issues in the deck panels. The objectives of this research were to investigate the causes of spalling in precast-prestressed panels and propose cost-effective alternative solutions including improved design options for new construction, as well as suggest mitigation methods for existing deteriorated bridge decks. A survey of transportation agencies and a series of bridge deck investigations were conducted to determine the nature and causes of spalling. Panel deck system modifications were proposed and evaluated for potential use in new construction. These modifications were investigated in terms of structural performance and serviceability with respect to the current design. Panel deck system modifications evaluated included an increase in tendon side cover, the addition of fibers or corrosion inhibitor to the panel concrete mixture, an increase in reinforcement in the cast-in-place concrete topping, and the substitution of edge tendons with epoxy-coated steel or carbon fiber reinforced polymer tendons. Efficiency of the proposed solutions was examined and validated through fundamental laboratory studies and numerical simulations using finite element modeling. Finally, recommendations are provided for new and existing construction to mitigate the spalling problem.
Spalling Solution of Precast-Prestressed Bridge Deck Panel
This research has examined spalling of several partial-depth precast prestressed concrete (PPC) bridge decks. It was recently observed that some bridges with this panel system in the MoDOT inventory have experienced rusting of embedded steel reinforcement and concrete spalling issues in the deck panels. The objectives of this research were to investigate the causes of spalling in precast-prestressed panels and propose cost-effective alternative solutions including improved design options for new construction, as well as suggest mitigation methods for existing deteriorated bridge decks. A survey of transportation agencies and a series of bridge deck investigations were conducted to determine the nature and causes of spalling. Panel deck system modifications were proposed and evaluated for potential use in new construction. These modifications were investigated in terms of structural performance and serviceability with respect to the current design. Panel deck system modifications evaluated included an increase in tendon side cover, the addition of fibers or corrosion inhibitor to the panel concrete mixture, an increase in reinforcement in the cast-in-place concrete topping, and the substitution of edge tendons with epoxy-coated steel or carbon fiber reinforced polymer tendons. Efficiency of the proposed solutions was examined and validated through fundamental laboratory studies and numerical simulations using finite element modeling. Finally, recommendations are provided for new and existing construction to mitigate the spalling problem.
Spalling Solution of Precast-Prestressed Bridge Deck Panel
L. Sneed (author) / A. Belarbi (author) / Y. M. You (author)
2010
211 pages
Report
No indication
English
British Library Conference Proceedings | 2010
|Numerical Simulation of Partial-Depth Precast Concrete Bridge Deck Spalling
Online Contents | 2012
|Numerical Simulation of Partial-Depth Precast Concrete Bridge Deck Spalling
British Library Online Contents | 2012
|Numerical Simulation of Partial-Depth Precast Concrete Bridge Deck Spalling
Online Contents | 2012
|