A platform for research: civil engineering, architecture and urbanism
Accurate prediction of pavement performance is critical to pavement management agencies. Reliable and accurate predictions of pavement infrastructure performance can save significant amounts of money for pavement infrastructure management agencies through better planning, maintenance, and rehabilitation activities. Pavement infrastructure deterioration is a dynamic, complicated, and stochastic process with its outcome as the aggregated impact from various factors such as traffic loading, environmental condition, structural capacities, and some unobserved factors. However, existing performance prediction models are still constrained by inadequate consideration of the dynamic and stochastic characteristics of pavement infrastructure deterioration. The goal of this research is to develop a probabilistic and adaptive methodological framework that is capable of capturing the dynamic and stochastic nature of pavement deterioration processes. The ordered probit model and the sequential logit model as probabilistic models are proposed to directly predict the performance of pavements in terms of their condition states by relating the performance to the structural, traffic, and environmental variables. The proposed probabilistic models were pilot-tested with pavement performance data collected during the AASHO Road Test, yielding good prediction results.
Accurate prediction of pavement performance is critical to pavement management agencies. Reliable and accurate predictions of pavement infrastructure performance can save significant amounts of money for pavement infrastructure management agencies through better planning, maintenance, and rehabilitation activities. Pavement infrastructure deterioration is a dynamic, complicated, and stochastic process with its outcome as the aggregated impact from various factors such as traffic loading, environmental condition, structural capacities, and some unobserved factors. However, existing performance prediction models are still constrained by inadequate consideration of the dynamic and stochastic characteristics of pavement infrastructure deterioration. The goal of this research is to develop a probabilistic and adaptive methodological framework that is capable of capturing the dynamic and stochastic nature of pavement deterioration processes. The ordered probit model and the sequential logit model as probabilistic models are proposed to directly predict the performance of pavements in terms of their condition states by relating the performance to the structural, traffic, and environmental variables. The proposed probabilistic models were pilot-tested with pavement performance data collected during the AASHO Road Test, yielding good prediction results.
Probabilistic and Adaptive Approach to Modeling Performance of Pavement Infrastructure
2007
120 pages
Report
No indication
English
British Library Online Contents | 1993
|Probabilistic Approach to Evaluate Pavement Performance in APT Experiments
Springer Verlag | 2024
|Adaptive logic applications in pavement performance modeling
British Library Conference Proceedings | 2000
|Probabilistic prediction of asphalt pavement performance
Taylor & Francis Verlag | 2019
|