A platform for research: civil engineering, architecture and urbanism
Wildfires Dynamics in Siberian Larch Forests
Wildfire number and burned area temporal dynamics within all of Siberia and along a south-north transect in central Siberia (45deg-73degN) were studied based on NOAA/AVHRR (National Oceanic and Atmospheric Administration/ Advanced Very High Resolution Radiometer) and Terra/MODIS (Moderate Resolution Imaging Spectroradiometer) data and field measurements for the period 1996-2015. In addition, fire return interval (FRI) along the south-north transect was analyzed. Both the number of forest fires and the size of the burned area increased during recent decades (p < 0.05). Significant correlations were found between forest fires, burned areas and air temperature (r = 0.5) and drought index (The Standardized Precipitation Evapotranspiration Index, SPEI) (r = 0.43). Within larch stands along the transect, wildfire frequency was strongly correlated with incoming solar radiation (r = 0.91). Fire danger period length decreased linearly from south to north along the transect. Fire return interval increased from 80 years at 62 N to 200 years at the Arctic Circle (6633' N), and to about 300 years near the northern limit of closed forest stands (about 71+ N). That increase was negatively correlated with incoming solar radiation (r = 0.95). Keywords: wildfires; drought index; larch stands; fire return interval; fire frequency; burned area; climate-induced trends in Siberian wildfires
Wildfires Dynamics in Siberian Larch Forests
Wildfire number and burned area temporal dynamics within all of Siberia and along a south-north transect in central Siberia (45deg-73degN) were studied based on NOAA/AVHRR (National Oceanic and Atmospheric Administration/ Advanced Very High Resolution Radiometer) and Terra/MODIS (Moderate Resolution Imaging Spectroradiometer) data and field measurements for the period 1996-2015. In addition, fire return interval (FRI) along the south-north transect was analyzed. Both the number of forest fires and the size of the burned area increased during recent decades (p < 0.05). Significant correlations were found between forest fires, burned areas and air temperature (r = 0.5) and drought index (The Standardized Precipitation Evapotranspiration Index, SPEI) (r = 0.43). Within larch stands along the transect, wildfire frequency was strongly correlated with incoming solar radiation (r = 0.91). Fire danger period length decreased linearly from south to north along the transect. Fire return interval increased from 80 years at 62 N to 200 years at the Arctic Circle (6633' N), and to about 300 years near the northern limit of closed forest stands (about 71+ N). That increase was negatively correlated with incoming solar radiation (r = 0.95). Keywords: wildfires; drought index; larch stands; fire return interval; fire frequency; burned area; climate-induced trends in Siberian wildfires
Wildfires Dynamics in Siberian Larch Forests
Ponomarev, Evgenii I. (author) / Kharuk, Viacheslav I. (author) / Ranson, Kenneth J. (author)
Forests ; 7
2016-06-17
Miscellaneous
No indication
English
Wildfires in northern Siberian larch dominated communities
IOP Institute of Physics | 2011
|Mapping stand age dynamics of the Siberian larch forests from recent Landsat observations
Online Contents | 2016
|Winter soil temperature varies with canopy cover in Siberian larch forests
DOAJ | 2024
|