A platform for research: civil engineering, architecture and urbanism
Effect of Pulse‐and‐Glide Strategy on Traffic Flow for a Platoon of Mixed Automated and Manually Driven Vehicles
The fuel consumption of ground vehicles is significantly affected by how they are driven. The fuel‐optimized vehicular automation technique can improve fuel economy for the host vehicle, but their effectiveness on a platoon of vehicles is still unknown. This article studies the performance of a well‐known fuel‐optimized vehicle automation strategy, i.e., Pulse‐and‐Glide (PnG) operation, on traffic smoothness and fuel economy in a mixed traffic flow. The mixed traffic flow is assumed to be a single‐lane highway on flat road consisting of both driverless and manually driven vehicles. The driverless vehicles are equipped with fuel economy‐oriented automated controller using the PnG strategy. The manually driven vehicles are simulated using the Intelligent Driver Models (IDM) to mimic the average car‐following behavior of human drivers in naturalistic traffics. A series of simulations are conducted with three scenarios, i.e., a single car, a car section, and a car platoon. The simulation results show that the PnG strategy can significantly improve the fuel economy of individual vehicles. For traffic flows, the fuel economy and traffic smoothness vary significantly under the PnG strategy.
Effect of Pulse‐and‐Glide Strategy on Traffic Flow for a Platoon of Mixed Automated and Manually Driven Vehicles
The fuel consumption of ground vehicles is significantly affected by how they are driven. The fuel‐optimized vehicular automation technique can improve fuel economy for the host vehicle, but their effectiveness on a platoon of vehicles is still unknown. This article studies the performance of a well‐known fuel‐optimized vehicle automation strategy, i.e., Pulse‐and‐Glide (PnG) operation, on traffic smoothness and fuel economy in a mixed traffic flow. The mixed traffic flow is assumed to be a single‐lane highway on flat road consisting of both driverless and manually driven vehicles. The driverless vehicles are equipped with fuel economy‐oriented automated controller using the PnG strategy. The manually driven vehicles are simulated using the Intelligent Driver Models (IDM) to mimic the average car‐following behavior of human drivers in naturalistic traffics. A series of simulations are conducted with three scenarios, i.e., a single car, a car section, and a car platoon. The simulation results show that the PnG strategy can significantly improve the fuel economy of individual vehicles. For traffic flows, the fuel economy and traffic smoothness vary significantly under the PnG strategy.
Effect of Pulse‐and‐Glide Strategy on Traffic Flow for a Platoon of Mixed Automated and Manually Driven Vehicles
Li, Shengbo Eben (author) / Deng, Kun / Zheng, Yang / Peng, Huei
2015
Article (Journal)
English
BKL:
56.00
Delay modelling at manually operated toll plazas under mixed traffic conditions
DOAJ | 2022
|Phantom Traffic: Platoon Formed at Low Traffic Density
ASCE | 2018
|