A platform for research: civil engineering, architecture and urbanism
Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits
C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf–air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate(A n) was enhanced as vapor pressure deficits increased. A close relationship between A n and stomatal conductance(g s) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase(PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme(NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme(NAD-ME) was higher.Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges.
Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits
C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf–air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate(A n) was enhanced as vapor pressure deficits increased. A close relationship between A n and stomatal conductance(g s) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase(PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme(NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme(NAD-ME) was higher.Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges.
Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits
2015
Article (Journal)
English
交互响应 , 水汽压 , 土壤水分 , 光合特性 , 烟酰胺腺嘌呤二核苷酸 , 磷酸烯醇式丙酮酸羧化酶
Planting method of haloxylon ammodendron for increasing root system vegetative mass
European Patent Office | 2020
|European Patent Office | 2024
|Effects of Sodium Chloride and Sodium Sulfate on Haloxylon ammodendron Seed Germination
DOAJ | 2020
|