A platform for research: civil engineering, architecture and urbanism
Succinate-bonded pullulan: An efficient and reusable super-sorbent for cadmium-uptake from spiked high-hardness groundwater
Chemically modified pullulan was evaluated for its sorption efficiency and selectivity to remove cadmium (Cd) from spiked high-hardness groundwater (GW). Pullulan esterified with succinic anhydride using dimethylaminopyridine showed a fairly high degree of substitution value as confirmed by (1)H NMR spectroscopy. Pullulan succinate (Pull-Suc) was converted into the sodium salt (Pull-Suc-Na). The effect of contact time (5-200min) and pH (2-8) on Cd-uptake by the sorbent (Pull-Suc-Na) was investigated. The sorbent showed more than 90% Cd-removal in first 15min from distilled water (DW) and GW solution, respectively. Comparison of Pull-Suc-Na with other polysaccharidal sorbents suggested its high efficiency (DW 476.2mg/g and GW 454.5mg/g) and selectivity for the removal of Cd by an ion exchange mechanism, which is further supported by the negative Gibbs free energy values calculated from Langmuir isotherms. A Langmuir isotherm kinetic model provided the best fit for the sorption of Cd using Pull-Suc-Na. The sorbent showed a negligible decrease in Cd-uptake over three regeneration cycles. The thermal stability testing of the sorbents indicated that Pull-Suc-Na (sorbent) is more stable than Pull-Suc.
Succinate-bonded pullulan: An efficient and reusable super-sorbent for cadmium-uptake from spiked high-hardness groundwater
Chemically modified pullulan was evaluated for its sorption efficiency and selectivity to remove cadmium (Cd) from spiked high-hardness groundwater (GW). Pullulan esterified with succinic anhydride using dimethylaminopyridine showed a fairly high degree of substitution value as confirmed by (1)H NMR spectroscopy. Pullulan succinate (Pull-Suc) was converted into the sodium salt (Pull-Suc-Na). The effect of contact time (5-200min) and pH (2-8) on Cd-uptake by the sorbent (Pull-Suc-Na) was investigated. The sorbent showed more than 90% Cd-removal in first 15min from distilled water (DW) and GW solution, respectively. Comparison of Pull-Suc-Na with other polysaccharidal sorbents suggested its high efficiency (DW 476.2mg/g and GW 454.5mg/g) and selectivity for the removal of Cd by an ion exchange mechanism, which is further supported by the negative Gibbs free energy values calculated from Langmuir isotherms. A Langmuir isotherm kinetic model provided the best fit for the sorption of Cd using Pull-Suc-Na. The sorbent showed a negligible decrease in Cd-uptake over three regeneration cycles. The thermal stability testing of the sorbents indicated that Pull-Suc-Na (sorbent) is more stable than Pull-Suc.
Succinate-bonded pullulan: An efficient and reusable super-sorbent for cadmium-uptake from spiked high-hardness groundwater
2015
Article (Journal)
English
Electrokinetic treatment of cadmium spiked clays
British Library Conference Proceedings | 1999
|British Library Online Contents | 2012
|Mercury uptake by Silene vulgaris grown on contaminated spiked soils
Online Contents | 2012
|HLC/pullulan and pullulan hydrogels: their microstructure, engineering process and biocompatibility
British Library Online Contents | 2016
|HLC/pullulan and pullulan hydrogels: their microstructure, engineering process and biocompatibility
British Library Online Contents | 2016
|