A platform for research: civil engineering, architecture and urbanism
Estimation of Wind-Driven Rain Intrusion through Building Envelope Defects and Breaches during Tropical Cyclones
AbstractWind-driven rain (WDR) intrusion through building envelope defects and breaches is a major source of damage to building interior components and contents during hurricane landfall. The extent of total building interior damage (damage to building interior components, utility, and contents) is a function of the total volume of WDR intrusion which in turn is dependent on the size of openings, wind speed, and rain intensity. Currently, the volume of rainwater intrusion through a given opening on a building façade is estimated using a semiempirical model with use of parametric information based on engineering judgment. This paper presents a test-based WDR intrusion model which uses values of parameters developed through testing of building models under simulated WDR conditions. The model estimates the total volume of rainwater intrusion through an opening as a summation of WDR volume attributable to direct impinging raindrops and surface runoff rainwater from the undamaged envelope area. Test-based WDR intrusion data measured using a building model with simulated envelope defects and breaches were used to validate the applicability of the new WDR intrusion model to full-scale buildings. Comparison between model estimation results and WDR intrusion measurements through simulated window sill cracks and envelope breaches demonstrated reasonable agreement. The model presented herein can be used to predict the WDR intrusion and subsequent interior damage to low-rise buildings during tropical storms and hurricanes.
Estimation of Wind-Driven Rain Intrusion through Building Envelope Defects and Breaches during Tropical Cyclones
AbstractWind-driven rain (WDR) intrusion through building envelope defects and breaches is a major source of damage to building interior components and contents during hurricane landfall. The extent of total building interior damage (damage to building interior components, utility, and contents) is a function of the total volume of WDR intrusion which in turn is dependent on the size of openings, wind speed, and rain intensity. Currently, the volume of rainwater intrusion through a given opening on a building façade is estimated using a semiempirical model with use of parametric information based on engineering judgment. This paper presents a test-based WDR intrusion model which uses values of parameters developed through testing of building models under simulated WDR conditions. The model estimates the total volume of rainwater intrusion through an opening as a summation of WDR volume attributable to direct impinging raindrops and surface runoff rainwater from the undamaged envelope area. Test-based WDR intrusion data measured using a building model with simulated envelope defects and breaches were used to validate the applicability of the new WDR intrusion model to full-scale buildings. Comparison between model estimation results and WDR intrusion measurements through simulated window sill cracks and envelope breaches demonstrated reasonable agreement. The model presented herein can be used to predict the WDR intrusion and subsequent interior damage to low-rise buildings during tropical storms and hurricanes.
Estimation of Wind-Driven Rain Intrusion through Building Envelope Defects and Breaches during Tropical Cyclones
Chowdhury, Arindam Gan (author) / Baheru, Thomas / Pinelli, Jean-Paul
2015
Article (Journal)
English
Quantification of Wind-Driven Rain Intrusion in Building-Integrated Photovoltaic Systems
BASE | 2021
|Characteristics of wind and wind-driven rain during tropical thunderstorms
British Library Conference Proceedings | 1999
|Dynamic Evaluation of the Building Envelope for Wind and Wind-Driven Rain Performance
Online Contents | 1995
|