A platform for research: civil engineering, architecture and urbanism
Long-term effects of elemental composition of particulate matter on inflammatory blood markers in European cohorts
Epidemiological studies have associated long-term exposure to ambient particulate matter with increased mortality from cardiovascular and respiratory disorders. Systemic inflammation is a plausible biological mechanism behind this association. However, it is unclear how the chemical composition of PM affects inflammatory responses. To investigate the association between long-term exposure to elemental components of PM and the inflammatory blood markers high-sensitivity C-reactive protein (hsCRP) and fibrinogen as part of the European ESCAPE and TRANSPHORM multi-center projects. In total, 21,558 hsCRP measurements and 17,428 fibrinogen measurements from cross-sections of five and four cohort studies were available, respectively. Residential long-term concentrations of particulate matter <10μm (PM10) and <2.5μm (PM2.5) in diameter and selected elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, zinc) were estimated based on land-use regression models. Associations between components and inflammatory markers were estimated using linear regression models for each cohort separately. Cohort-specific results were combined using random effects meta-analysis. As a sensitivity analysis the models were additionally adjusted for PM mass. A 5ng/m(3) increase in PM2.5 copper and a 500ng/m(3) increase in PM10 iron were associated with a 6.3% [0.7; 12.3%] and 3.6% [0.3; 7.1%] increase in hsCRP, respectively. These associations between components and fibrinogen were slightly weaker. A 10ng/m(3) increase in PM2.5 zinc was associated with a 1.2% [0.1; 2.4%] increase in fibrinogen; confidence intervals widened when additionally adjusting for PM2.5. Long-term exposure to transition metals within ambient particulate matter, originating from traffic and industry, may be related to chronic systemic inflammation providing a link to long-term health effects of particulate matter.
Long-term effects of elemental composition of particulate matter on inflammatory blood markers in European cohorts
Epidemiological studies have associated long-term exposure to ambient particulate matter with increased mortality from cardiovascular and respiratory disorders. Systemic inflammation is a plausible biological mechanism behind this association. However, it is unclear how the chemical composition of PM affects inflammatory responses. To investigate the association between long-term exposure to elemental components of PM and the inflammatory blood markers high-sensitivity C-reactive protein (hsCRP) and fibrinogen as part of the European ESCAPE and TRANSPHORM multi-center projects. In total, 21,558 hsCRP measurements and 17,428 fibrinogen measurements from cross-sections of five and four cohort studies were available, respectively. Residential long-term concentrations of particulate matter <10μm (PM10) and <2.5μm (PM2.5) in diameter and selected elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, zinc) were estimated based on land-use regression models. Associations between components and inflammatory markers were estimated using linear regression models for each cohort separately. Cohort-specific results were combined using random effects meta-analysis. As a sensitivity analysis the models were additionally adjusted for PM mass. A 5ng/m(3) increase in PM2.5 copper and a 500ng/m(3) increase in PM10 iron were associated with a 6.3% [0.7; 12.3%] and 3.6% [0.3; 7.1%] increase in hsCRP, respectively. These associations between components and fibrinogen were slightly weaker. A 10ng/m(3) increase in PM2.5 zinc was associated with a 1.2% [0.1; 2.4%] increase in fibrinogen; confidence intervals widened when additionally adjusting for PM2.5. Long-term exposure to transition metals within ambient particulate matter, originating from traffic and industry, may be related to chronic systemic inflammation providing a link to long-term health effects of particulate matter.
Long-term effects of elemental composition of particulate matter on inflammatory blood markers in European cohorts
Hampel, Regina (author) / Peters, Annette / Beelen, Rob / Brunekreef, Bert / Cyrys, Josef / de Faire, Ulf / de Hoogh, Kees / Fuks, Kateryna / Hoffmann, Barbara / Hüls, Anke
2015
Article (Journal)
English
BKL:
30.00
Naturwissenschaften allgemein: Allgemeines
Particulate Matter Accumulation and Elemental Composition of Eight Roadside Plant Species
DOAJ | 2023
|Inflammatory markers in relation to long-term air pollution
Online Contents | 2015
|Taylor & Francis Verlag | 2008
|