A platform for research: civil engineering, architecture and urbanism
Global positioning system-enabled vehicles provide an efficient way to obtain large quantities of movement data for individuals. However, the raw data usually lack activity information, which is highly valuable for a range of applications and services. This study provides a novel and practical framework for inferring the trip purposes of taxi passengers such that the semantics of taxi trajectory data can be enriched. The probability of points of interest to be visited is modeled by Bayes' rules, which take both spatial and temporal constraints into consideration. Combining this approach with Monte Carlo simulations, we conduct a study on Shanghai taxi trajectory data. Our results closely approximate the residents' travel survey data in Shanghai. Furthermore, we reveal the spatiotemporal characteristics of nine daily activity types based on inference results, including their temporal regularities, spatial dynamics, and distributions of trip lengths and directions. In the era of big data, we encounter the dilemma of "trajectory data rich but activity information poor" when investigating human movements from various data sources. This study presents a promising step toward mining abundant activity information from individuals' trajectories.
Global positioning system-enabled vehicles provide an efficient way to obtain large quantities of movement data for individuals. However, the raw data usually lack activity information, which is highly valuable for a range of applications and services. This study provides a novel and practical framework for inferring the trip purposes of taxi passengers such that the semantics of taxi trajectory data can be enriched. The probability of points of interest to be visited is modeled by Bayes' rules, which take both spatial and temporal constraints into consideration. Combining this approach with Monte Carlo simulations, we conduct a study on Shanghai taxi trajectory data. Our results closely approximate the residents' travel survey data in Shanghai. Furthermore, we reveal the spatiotemporal characteristics of nine daily activity types based on inference results, including their temporal regularities, spatial dynamics, and distributions of trip lengths and directions. In the era of big data, we encounter the dilemma of "trajectory data rich but activity information poor" when investigating human movements from various data sources. This study presents a promising step toward mining abundant activity information from individuals' trajectories.
Inferring trip purposes and uncovering travel patterns from taxi trajectory data
2016
Article (Journal)
English
Revealing travel patterns and city structure with taxi trip data
Elsevier | 2015
|Revealing travel patterns and city structure with taxi trip data
Online Contents | 2015
|Detecting Taxi Travel Patterns using GPS Trajectory Data: A Case Study of Beijing
Online Contents | 2019
|