A platform for research: civil engineering, architecture and urbanism
Parameterization of Centimeter-Scale Sea Ice Surface Roughness Using Terrestrial LiDAR
Microwave scattering from sea ice is partially controlled by the ice surface roughness. In this paper, we propose a technique for calculating 2-D centimeter-scale surface roughness parameters, including the rms height, correlation length, and form of autocorrelation function, from 3-D terrestrial light detection and ranging data. We demonstrate that a single scale of roughness can be extracted from complex sea ice surfaces, incorporating multiple scales of topography, after sophisticated 2-D detrending, and calculate roughness parameters for a wide range of artificial and natural sea ice surface types. The 2-D technique is shown to be considerably more precise than standard 1-D profiling techniques and can therefore characterize surface roughness as a stationary single-scale process, which a 1-D technique typically cannot do. Sea ice surfaces are generally found to have strongly anisotropic correlation lengths, indicating that microwave scattering models for sea ice should include surface spectra that vary as a function of the azimuthal angle of incident radiation. However, our results demonstrate that there is no fundamental relationship between the rms height and correlation length for sea ice surfaces if the sampling area is above a threshold minimum size.
Parameterization of Centimeter-Scale Sea Ice Surface Roughness Using Terrestrial LiDAR
Microwave scattering from sea ice is partially controlled by the ice surface roughness. In this paper, we propose a technique for calculating 2-D centimeter-scale surface roughness parameters, including the rms height, correlation length, and form of autocorrelation function, from 3-D terrestrial light detection and ranging data. We demonstrate that a single scale of roughness can be extracted from complex sea ice surfaces, incorporating multiple scales of topography, after sophisticated 2-D detrending, and calculate roughness parameters for a wide range of artificial and natural sea ice surface types. The 2-D technique is shown to be considerably more precise than standard 1-D profiling techniques and can therefore characterize surface roughness as a stationary single-scale process, which a 1-D technique typically cannot do. Sea ice surfaces are generally found to have strongly anisotropic correlation lengths, indicating that microwave scattering models for sea ice should include surface spectra that vary as a function of the azimuthal angle of incident radiation. However, our results demonstrate that there is no fundamental relationship between the rms height and correlation length for sea ice surfaces if the sampling area is above a threshold minimum size.
Parameterization of Centimeter-Scale Sea Ice Surface Roughness Using Terrestrial LiDAR
Landy, Jack C (author) / Isleifson, Dustin / Komarov, Alexander S / Barber, David G
2015
Article (Journal)
English
Local classification TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Surface Roughness Parameterization Using Land Use / Land Cover Enhanced by Lidar Point Cloud Data
HENRY – Federal Waterways Engineering and Research Institute (BAW) | 2012
|Topographic changes in real-scale debris-flow experiment using terrestrial LiDAR
TIBKAT | 2022
|