A platform for research: civil engineering, architecture and urbanism
Waveform Aliasing in Satellite Radar Altimetry
The full deramp pulse compression scheme employed by satellite radar altimeters digitizes each radar echo at a sampling rate matched to the chirp bandwidth. Echo power is undersampled by a factor of 2 when the power samples are simply obtained by squaring the magnitude of the echo samples, without first resampling, as is done in all altimeters to date. This results in inadequate sampling of the leading edge of the waveform if the significant wave height (SWH) is low. For a typical Ku-band altimeter with a chirp bandwidth of 320 MHz, simple squaring should be inadequate over ocean surfaces with SWH less than 2 m, that is, half of the ocean. Simply zero-padding the digital samples prior to range Fourier transform alleviates the problem introduced by magnitude squaring. Data from the CryoSat altimeter are used to demonstrate this remedy, and it is found that this reduces the variance in estimated range by 10% and in SWH by 20%. These improvements are confined to a range of SWH values between 1 and 4 m. Zero-padding also seems to have some small impact on values estimated over very flat surfaces (SWH ≪ 1 m), although theory suggests that better resolution of such surfaces would require a bandwidth exceeding 320 MHz. The 500-MHz bandwidth of the Ka-band altimeter on the Satellite with ARGOS and AltiKa mission should encounter these difficulties at smaller SWH values. Onboard range tracking and automatic gain control loops in future altimeters might be improved if zero-padding were employed during onboard waveform processing.
Waveform Aliasing in Satellite Radar Altimetry
The full deramp pulse compression scheme employed by satellite radar altimeters digitizes each radar echo at a sampling rate matched to the chirp bandwidth. Echo power is undersampled by a factor of 2 when the power samples are simply obtained by squaring the magnitude of the echo samples, without first resampling, as is done in all altimeters to date. This results in inadequate sampling of the leading edge of the waveform if the significant wave height (SWH) is low. For a typical Ku-band altimeter with a chirp bandwidth of 320 MHz, simple squaring should be inadequate over ocean surfaces with SWH less than 2 m, that is, half of the ocean. Simply zero-padding the digital samples prior to range Fourier transform alleviates the problem introduced by magnitude squaring. Data from the CryoSat altimeter are used to demonstrate this remedy, and it is found that this reduces the variance in estimated range by 10% and in SWH by 20%. These improvements are confined to a range of SWH values between 1 and 4 m. Zero-padding also seems to have some small impact on values estimated over very flat surfaces (SWH ≪ 1 m), although theory suggests that better resolution of such surfaces would require a bandwidth exceeding 320 MHz. The 500-MHz bandwidth of the Ka-band altimeter on the Satellite with ARGOS and AltiKa mission should encounter these difficulties at smaller SWH values. Onboard range tracking and automatic gain control loops in future altimeters might be improved if zero-padding were employed during onboard waveform processing.
Waveform Aliasing in Satellite Radar Altimetry
Smith, Walter H. F (author) / Scharroo, Remko
2015
Article (Journal)
English
Local classification TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Special Section: Satellite Radar Altimetry - Preface
Online Contents | 2002
Satellite radar altimetry applications in Earth analysis
TIBKAT | 2023
|ICESat Full-Waveform Altimetry Compared to Airborne Laser Scanning Altimetry Over The Netherlands
Online Contents | 2009
|