A platform for research: civil engineering, architecture and urbanism
Design of an Optimal Soil Moisture Monitoring Network Using SMOS Retrieved Soil Moisture
Many methods have been proposed to select sites for grid-scale soil moisture monitoring networks; however, calibration/validation activities also require information about where to place grid representative monitoring sites. In order to design a soil moisture network for this task in the Great Lakes Basin (522 000 km 2 ), the dual-entropy multiobjective optimization algorithm was used to maximize the information content and minimize the redundancy of information in a potential soil moisture monitoring network. Soil moisture retrieved from the Soil Moisture and Ocean Salinity (SMOS) mission during the frost-free periods of 2010-2013 were filtered for data quality and then used in a multiobjective search to find Pareto optimum network designs based on the joint entropy and total correlation measures of information content and information redundancy, respectively. Differences in the information content of SMOS ascending and descending overpasses resulted in distinctly different network designs. Entropy from the SMOS ascending overpass was found to be spatially consistent, whereas descending overpass entropy had many peaks that coincided with areas of high subgrid heterogeneity. A combination of both ascending and descending overpasses produced network designs that incorporated aspects of information from each overpass. Initial networks were designed to include 15 monitoring sites, but the addition of network cost as an objective demonstrated that a network with similar information content could be achieved with fewer monitoring stations.
Design of an Optimal Soil Moisture Monitoring Network Using SMOS Retrieved Soil Moisture
Many methods have been proposed to select sites for grid-scale soil moisture monitoring networks; however, calibration/validation activities also require information about where to place grid representative monitoring sites. In order to design a soil moisture network for this task in the Great Lakes Basin (522 000 km 2 ), the dual-entropy multiobjective optimization algorithm was used to maximize the information content and minimize the redundancy of information in a potential soil moisture monitoring network. Soil moisture retrieved from the Soil Moisture and Ocean Salinity (SMOS) mission during the frost-free periods of 2010-2013 were filtered for data quality and then used in a multiobjective search to find Pareto optimum network designs based on the joint entropy and total correlation measures of information content and information redundancy, respectively. Differences in the information content of SMOS ascending and descending overpasses resulted in distinctly different network designs. Entropy from the SMOS ascending overpass was found to be spatially consistent, whereas descending overpass entropy had many peaks that coincided with areas of high subgrid heterogeneity. A combination of both ascending and descending overpasses produced network designs that incorporated aspects of information from each overpass. Initial networks were designed to include 15 monitoring sites, but the addition of network cost as an objective demonstrated that a network with similar information content could be achieved with fewer monitoring stations.
Design of an Optimal Soil Moisture Monitoring Network Using SMOS Retrieved Soil Moisture
Kornelsen, Kurt C (author) / Coulibaly, Paulin
2015
Article (Journal)
English
Local classification TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
The SMOS Soil Moisture Retrieval Algorithm
Online Contents | 2012
|Soil Moisture Retrieval Using Neural Networks: Application to SMOS
Online Contents | 2015
|Disaggregation of SMOS Soil Moisture in Southeastern Australia
Online Contents | 2012
|Downscaling SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data
Online Contents | 2011
|