A platform for research: civil engineering, architecture and urbanism
Forcing Scale Invariance in Multipolarization SAR Change Detection
This paper considers the problem of coherent (in the sense that both amplitudes and relative phases of the polarimetric returns are used to construct the decision statistic) multipolarization synthetic aperture radar change detection starting from the availability of image pairs exhibiting possible power mismatches/miscalibrations. The principle of invariance is used to characterize the class of scale-invariant decision rules which are insensitive to power mismatches and ensure the constant false alarm rate property. A maximal invariant statistic is derived together with the induced maximal invariant in the parameter space which significantly compresses the data/parameter domain. A generalized likelihood ratio test is synthesized both for the cases of two- and three-polarimetric channels. Interestingly, for the two-channel case, it is based on the comparison of the condition number of a data-dependent matrix with a suitable threshold. Some additional invariant decision rules are also proposed. The performance of the considered scale-invariant structures is compared to those from two noninvariant counterparts using both simulated and real radar data. The results highlight the robustness of the proposed method and the performance tradeoff involved.
Forcing Scale Invariance in Multipolarization SAR Change Detection
This paper considers the problem of coherent (in the sense that both amplitudes and relative phases of the polarimetric returns are used to construct the decision statistic) multipolarization synthetic aperture radar change detection starting from the availability of image pairs exhibiting possible power mismatches/miscalibrations. The principle of invariance is used to characterize the class of scale-invariant decision rules which are insensitive to power mismatches and ensure the constant false alarm rate property. A maximal invariant statistic is derived together with the induced maximal invariant in the parameter space which significantly compresses the data/parameter domain. A generalized likelihood ratio test is synthesized both for the cases of two- and three-polarimetric channels. Interestingly, for the two-channel case, it is based on the comparison of the condition number of a data-dependent matrix with a suitable threshold. Some additional invariant decision rules are also proposed. The performance of the considered scale-invariant structures is compared to those from two noninvariant counterparts using both simulated and real radar data. The results highlight the robustness of the proposed method and the performance tradeoff involved.
Forcing Scale Invariance in Multipolarization SAR Change Detection
Vincenzo Carotenuto (author) / Antonio De Maio / Carmine Clemente / John J Soraghan / Giusi Alfano
2016
Article (Journal)
English
Local classification TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Invariant Rules for Multipolarization SAR Change Detection
Online Contents | 2015
|Improving Target Detection Accuracy Based on Multipolarization MIMO GPR
Online Contents | 2015
|Compensation of Faraday Rotation in Multipolarization Scatterometry
Online Contents | 2010
|Multipolarization Microwave Scattering Model for Sahelian Grassland
Online Contents | 2010
|Evaluation of Textural and Multipolarization Radar Features for Crop Classification
Online Contents | 1995
|