A platform for research: civil engineering, architecture and urbanism
An Improvement in Multichannel SAR-GMTI Detection in Heterogeneous Environments
This paper deals with target-detection issues in extremely heterogeneous environments, with a multichannel synthetic-aperture-radar-based ground moving-target indication (SAR-GMTI) system, and proposes a new detector with the aim of addressing such extremely heterogeneous environments. The proposed detector is a multistage one: The first detection stage implements the conventional Displaced Phase Center Array test, but the second stage implements a new test, which is called the Degree of Radial-Velocity Consistency (DRVC) test. We will show that the newly developed DRVC test possesses two pronounced characteristics. The first characteristic is that the DRVC test incorporates such a priori knowledge that the radial velocities corresponding to the individual components of a moving target are all equal, while the second characteristic of the DRVC test is its clutter-heterogeneity-independent property. The two characteristics make the proposed detector a good candidate for addressing extremely heterogeneous environments. Simulation results demonstrate that the proposed detector outperforms several existing detectors, particularly in the capacity to handle extremely heterogeneous environments. Moreover, the application of the proposed detector to a set of real-measured three-channel airborne SAR-GMTI data further demonstrates the efficacy of the proposed detector.
An Improvement in Multichannel SAR-GMTI Detection in Heterogeneous Environments
This paper deals with target-detection issues in extremely heterogeneous environments, with a multichannel synthetic-aperture-radar-based ground moving-target indication (SAR-GMTI) system, and proposes a new detector with the aim of addressing such extremely heterogeneous environments. The proposed detector is a multistage one: The first detection stage implements the conventional Displaced Phase Center Array test, but the second stage implements a new test, which is called the Degree of Radial-Velocity Consistency (DRVC) test. We will show that the newly developed DRVC test possesses two pronounced characteristics. The first characteristic is that the DRVC test incorporates such a priori knowledge that the radial velocities corresponding to the individual components of a moving target are all equal, while the second characteristic of the DRVC test is its clutter-heterogeneity-independent property. The two characteristics make the proposed detector a good candidate for addressing extremely heterogeneous environments. Simulation results demonstrate that the proposed detector outperforms several existing detectors, particularly in the capacity to handle extremely heterogeneous environments. Moreover, the application of the proposed detector to a set of real-measured three-channel airborne SAR-GMTI data further demonstrates the efficacy of the proposed detector.
An Improvement in Multichannel SAR-GMTI Detection in Heterogeneous Environments
Baochang Liu (author) / Kuiying Yin / Yongkang Li / Fengyang Shen / Zheng Bao
2015
Article (Journal)
English
Local classification TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Suppression of clutter in multichannel SAR GMTI
Online Contents | 2014
|Suppression of Clutter in Multichannel SAR GMTI
Online Contents | 2014
|Adaptive CFAR for Space-Based Multichannel SAR-GMTI
Online Contents | 2012
|Image-Based Target Detection and Radial Velocity Estimation Methods for Multichannel SAR-GMTI
Online Contents | 2016
|Image-Based Target Detection and Radial Velocity Estimation Methods for Multichannel SAR-GMTI
Online Contents | 2017
|