A platform for research: civil engineering, architecture and urbanism
A Multivariate Empirical Mode DecompositionBased Approach to Pansharpening
We propose a novel class of schemes for the pansharpening of multispectral (MS) images using a multivariate empirical mode decomposition (MEMD) algorithm. MEMD is an extension of the empirical mode decomposition (EMD) algorithm, which enables the decomposition of multivariate data into its intrinsic oscillatory scales. The ability of MEMD to process multichannel data directly by performing data-driven, local, and multiscale analysis makes it a perfect match for pansharpening applications, a task for which standard univariate EMD is ill-equipped due to the nonuniqueness, mode-mixing, and mode-misalignment issues. We show that MEMD overcomes the limitations of standard EMD and yields improved spatial and spectral performance in the context of pansharpening of MS images. The potential of the proposed schemes is further demonstrated through comparative analysis against a number of standard pansharpening algorithms on both simulated Pleiades and real-world IKONOS data sets.
A Multivariate Empirical Mode DecompositionBased Approach to Pansharpening
We propose a novel class of schemes for the pansharpening of multispectral (MS) images using a multivariate empirical mode decomposition (MEMD) algorithm. MEMD is an extension of the empirical mode decomposition (EMD) algorithm, which enables the decomposition of multivariate data into its intrinsic oscillatory scales. The ability of MEMD to process multichannel data directly by performing data-driven, local, and multiscale analysis makes it a perfect match for pansharpening applications, a task for which standard univariate EMD is ill-equipped due to the nonuniqueness, mode-mixing, and mode-misalignment issues. We show that MEMD overcomes the limitations of standard EMD and yields improved spatial and spectral performance in the context of pansharpening of MS images. The potential of the proposed schemes is further demonstrated through comparative analysis against a number of standard pansharpening algorithms on both simulated Pleiades and real-world IKONOS data sets.
A Multivariate Empirical Mode DecompositionBased Approach to Pansharpening
2015
Article (Journal)
English
Local classification TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Improving Component Substitution Pansharpening Through Multivariate Regression of MS+Pan Data
Online Contents | 2007
|Pansharpening With Matting Model
Online Contents | 2014
|Pansharpening Based on Semiblind Deconvolution
Online Contents | 2015
|MTF-Adjusted Pansharpening Approach Based on Coupled Multiresolution Decompositions
Online Contents | 2015
|A Critical Comparison Among Pansharpening Algorithms
Online Contents | 2015
|