A platform for research: civil engineering, architecture and urbanism
Fast Hyperspectral Anomaly Detection via High-Order 2-D Crossing Filter
Anomaly detection has been an important topic in hyperspectral image analysis. This technique is sometimes more preferable than the supervised target detection because it requires no a priori information for the interested materials. Many efforts have been made in this topic; however, they usually suffer from excessive time cost and a high false-positive rate. There are two major problems that lead to such a predicament. First, the construction of the background model and affinity estimation are often overcomplicated. Second, most of these methods have to impose a stringent assumption on the spectrum distribution of background; however, these assumptions cannot hold for all practical situations. Based on this consideration, this paper proposes a novel method allowing for fast yet accurate pixel-level hyperspectral anomaly detection. We claim the following main contributions: construct a high-order 2-D crossing approach to find the regions of rapid change in the spectrum, which runs without any a priori assumption; and design a low-complexity discrimination framework for fast hyperspectral anomaly detection, which can be implemented by a series of filtering operators with linear time cost. Experiments on three different hyperspectral images containing several pixel-level anomalies demonstrate the superiority of the proposed detector compared with the benchmark methods.
Fast Hyperspectral Anomaly Detection via High-Order 2-D Crossing Filter
Anomaly detection has been an important topic in hyperspectral image analysis. This technique is sometimes more preferable than the supervised target detection because it requires no a priori information for the interested materials. Many efforts have been made in this topic; however, they usually suffer from excessive time cost and a high false-positive rate. There are two major problems that lead to such a predicament. First, the construction of the background model and affinity estimation are often overcomplicated. Second, most of these methods have to impose a stringent assumption on the spectrum distribution of background; however, these assumptions cannot hold for all practical situations. Based on this consideration, this paper proposes a novel method allowing for fast yet accurate pixel-level hyperspectral anomaly detection. We claim the following main contributions: construct a high-order 2-D crossing approach to find the regions of rapid change in the spectrum, which runs without any a priori assumption; and design a low-complexity discrimination framework for fast hyperspectral anomaly detection, which can be implemented by a series of filtering operators with linear time cost. Experiments on three different hyperspectral images containing several pixel-level anomalies demonstrate the superiority of the proposed detector compared with the benchmark methods.
Fast Hyperspectral Anomaly Detection via High-Order 2-D Crossing Filter
Yuan Yuan (author) / Qi Wang / Guokang Zhu
2015
Article (Journal)
English
Local classification TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Electromagnetics - Magnetic Anomaly Detection Using High-Order Crossing Method
Online Contents | 2012
|Collaborative Representation for Hyperspectral Anomaly Detection
Online Contents | 2015
|Classification and Hyperspectral - Anomaly Detection and Classification for Hyperspectral Imagery
Online Contents | 2002
|Hyperspectral Anomaly Detection With Attribute and Edge-Preserving Filters
Online Contents | 2017
|AutoGAD: An Improved ICA-Based Hyperspectral Anomaly Detection Algorithm
Online Contents | 2013
|