A platform for research: civil engineering, architecture and urbanism
Co-digestion of the hydromechanically separated organic fraction of municipal solid waste with sewage sludge
This study investigates the anaerobic digestion of the hydromechanically sorted organic fraction of municipal solid wastes (HS-OFMSW) co-digested with sewage sludge (SS). Eight laboratory-scale experiments were conducted under semi-continuous conditions at 15 and 20 days of solids retention time (SRT). The biogas yield from the waste reached 309 to 315 dm(3)/kgVS and 320 to 361 dm(3)/kgVS under mesophilic and thermophilic conditions, respectively. The addition of SS to HS-OFMSW (1:1 by weight) improved the C/N balance of the mixture, and the production of biogas through anaerobic mesophilic digestion increased to 494 dm(3)/kgVS, which corresponded to 316 dm(3)CH4/kgVS. However, when SS and HS-OFMSW were treated under thermophilic conditions, methanogenesis was inhibited by volatile fatty acids and free ammonia, which concentrations reached 5744 gCH3COOH/m(3) and 1009 gNH3/m(3), respectively.
Co-digestion of the hydromechanically separated organic fraction of municipal solid waste with sewage sludge
This study investigates the anaerobic digestion of the hydromechanically sorted organic fraction of municipal solid wastes (HS-OFMSW) co-digested with sewage sludge (SS). Eight laboratory-scale experiments were conducted under semi-continuous conditions at 15 and 20 days of solids retention time (SRT). The biogas yield from the waste reached 309 to 315 dm(3)/kgVS and 320 to 361 dm(3)/kgVS under mesophilic and thermophilic conditions, respectively. The addition of SS to HS-OFMSW (1:1 by weight) improved the C/N balance of the mixture, and the production of biogas through anaerobic mesophilic digestion increased to 494 dm(3)/kgVS, which corresponded to 316 dm(3)CH4/kgVS. However, when SS and HS-OFMSW were treated under thermophilic conditions, methanogenesis was inhibited by volatile fatty acids and free ammonia, which concentrations reached 5744 gCH3COOH/m(3) and 1009 gNH3/m(3), respectively.
Co-digestion of the hydromechanically separated organic fraction of municipal solid waste with sewage sludge
Borowski, Sebastian (author)
2015
Article (Journal)
English
BKL:
43.00
Biogas generation by two-phase anaerobic digestion of organic fraction of municipal solid waste
American Institute of Physics | 2012
|Anaerobic Digestion of Biodegradable Municipal Solid Waste and Activated Sludge
British Library Conference Proceedings | 2013
|British Library Online Contents | 2009
|Co-combustion of Sewage Sludge and Municipal Solid Waste in Germany
British Library Conference Proceedings | 1996
|