A platform for research: civil engineering, architecture and urbanism
Are horse paddocks threatening water quality through excess loading of nutrients?
The Baltic Sea is one of the most eutrophied water bodies in northern Europe and more than 50% of its total anthropogenic waterborne phosphorus (P) and nitrogen (N) loads derive from agricultural sources. Sweden is the second largest contributor of waterborne N and the third largest contributor of waterborne P to the Baltic Sea. Horse farms now occupy almost 10% of Swedish agricultural land, but are not well investigated with regard to their environmental impact. In this study, potential P, N and carbon (C) leaching losses were measured from two representative horse paddock topsoils (0-20 cm; a clay and a loamy sand) following simulated rainfall events in the laboratory. Results showed that the leachate concentrations and net release of P, N and dissolved organic C (DOC) from paddock topsoils were highest in feeding and excretion areas and considerably higher from the loamy sand than the clay paddock topsoil. Leaching losses of dissolved reactive P (DRP) were significantly (p < 0.05) correlated with concentrations of water-soluble P and ammonium acetate lactate-extractable P (P-AL) in the soil, while leaching losses of dissolved organic P and total organic N were significantly correlated with DOC concentration in leachate. Leaching loads of P and N from paddock topsoils greatly exceeded average figures for Swedish agricultural topsoils. It was concluded that: i) horse paddocks pose a potential threat to water quality via leaching of excess P and N, ii) feeding and excretion areas are potential hotspots for highly enhanced leaching losses, and iii) paddocks established on sandy soils are particularly susceptible to high N leaching losses.
Are horse paddocks threatening water quality through excess loading of nutrients?
The Baltic Sea is one of the most eutrophied water bodies in northern Europe and more than 50% of its total anthropogenic waterborne phosphorus (P) and nitrogen (N) loads derive from agricultural sources. Sweden is the second largest contributor of waterborne N and the third largest contributor of waterborne P to the Baltic Sea. Horse farms now occupy almost 10% of Swedish agricultural land, but are not well investigated with regard to their environmental impact. In this study, potential P, N and carbon (C) leaching losses were measured from two representative horse paddock topsoils (0-20 cm; a clay and a loamy sand) following simulated rainfall events in the laboratory. Results showed that the leachate concentrations and net release of P, N and dissolved organic C (DOC) from paddock topsoils were highest in feeding and excretion areas and considerably higher from the loamy sand than the clay paddock topsoil. Leaching losses of dissolved reactive P (DRP) were significantly (p < 0.05) correlated with concentrations of water-soluble P and ammonium acetate lactate-extractable P (P-AL) in the soil, while leaching losses of dissolved organic P and total organic N were significantly correlated with DOC concentration in leachate. Leaching loads of P and N from paddock topsoils greatly exceeded average figures for Swedish agricultural topsoils. It was concluded that: i) horse paddocks pose a potential threat to water quality via leaching of excess P and N, ii) feeding and excretion areas are potential hotspots for highly enhanced leaching losses, and iii) paddocks established on sandy soils are particularly susceptible to high N leaching losses.
Are horse paddocks threatening water quality through excess loading of nutrients?
Parvage, Mohammed Masud (author) / Ulén, Barbro / Kirchmann, Holger
2015
Article (Journal)
English
BKL:
43.00
Landcare Wisdom. The Environment Walk - Illoura Paddocks, ACT
British Library Online Contents | 1996
|Narciso corre a Monza - Box and Paddocks Expansion - Valentino Benati, Angelo Cortesi
Online Contents | 2004
|Contribution of Internal Nutrients Loading on the Water Quality of a Reservoir
DOAJ | 2019
|DUCTING ASSEMBLY FOR DE-STRATIFICATION AND CONSOLIDATING EXCESS WATER AND NUTRIENTS
European Patent Office | 2022
|DUCTING ASSEMBLY FOR DE-STRATIFICATION AND CONSOLIDATING EXCESS WATER AND NUTRIENTS
European Patent Office | 2024
|