A platform for research: civil engineering, architecture and urbanism
Simultaneous photooxidation and sorptive removal of As(III) by TiO2 supported layered double hydroxide
The present study focused on the enhanced removal of As(III) by the simultaneous photooxidation and removal process using TiO2 nanoparticles supported layered double hydroxide (TiO2/LDH). The TiO2/LDH nanocomposites were synthesized using a flocculation method, and nanosized (30-50 nm) TiO2 particles were well-distributed on the LDH surface. The XPS and DLS data revealed that the TiO2/LDH nanocomposites were both chemically and physically stable in the aquatic system. The optimum ratio of TiO2 was 20 wt.% and the calcination process of LDH enhanced the removal capacity of As(III) by the reconstruction process. In the kinetic removal experiment, UV irradiation improved the removal rate of As(III), based on the continuous conversion of As(III) to As(V), and that the removal rate was faster under alkaline conditions than acidic and neutral conditions due to the abundance of oxidants and negative charged As(III) species (pKa: 9.2). The main mechanism of As(III) photooxidation is the direct oxidation by [Formula: see text] , which is generated by supported TiO2 nanoparticles. X-ray near edge structure results also confirmed that the As(III) was completely oxidized to As(V). Consequently, the simultaneous photooxidation and removal process of As(III) by TiO2/LDH nanocomposites may be the effective removal option in As(III) contaminated water.
Simultaneous photooxidation and sorptive removal of As(III) by TiO2 supported layered double hydroxide
The present study focused on the enhanced removal of As(III) by the simultaneous photooxidation and removal process using TiO2 nanoparticles supported layered double hydroxide (TiO2/LDH). The TiO2/LDH nanocomposites were synthesized using a flocculation method, and nanosized (30-50 nm) TiO2 particles were well-distributed on the LDH surface. The XPS and DLS data revealed that the TiO2/LDH nanocomposites were both chemically and physically stable in the aquatic system. The optimum ratio of TiO2 was 20 wt.% and the calcination process of LDH enhanced the removal capacity of As(III) by the reconstruction process. In the kinetic removal experiment, UV irradiation improved the removal rate of As(III), based on the continuous conversion of As(III) to As(V), and that the removal rate was faster under alkaline conditions than acidic and neutral conditions due to the abundance of oxidants and negative charged As(III) species (pKa: 9.2). The main mechanism of As(III) photooxidation is the direct oxidation by [Formula: see text] , which is generated by supported TiO2 nanoparticles. X-ray near edge structure results also confirmed that the As(III) was completely oxidized to As(V). Consequently, the simultaneous photooxidation and removal process of As(III) by TiO2/LDH nanocomposites may be the effective removal option in As(III) contaminated water.
Simultaneous photooxidation and sorptive removal of As(III) by TiO2 supported layered double hydroxide
Lee, Sang-Ho (author) / Kim, Kyoung-Woong / Choi, Heechul / Takahashi, Yoshio
2015
Article (Journal)
English
BKL:
43.00
Layered double hydroxide film and composite material containing layered double hydroxide
European Patent Office | 2019
|Online Contents | 2017
|Protein adsorption on gold nanoparticles supported by a layered double hydroxide
British Library Online Contents | 2012
|