A platform for research: civil engineering, architecture and urbanism
A mathematical model that couples the governing and constitutive equations of two-phase flow and mechanical equilibrium has been developed to simulate gas injection tests for both laboratory- and field-scale experiments. The model takes into consideration the inherent anisotropy of sedimentary rocks due to bedding by including an anisotropic elastoplastic model for the mechanical process and using an anisotropic permeability tensor for the flow processes for both water and gas. The gas and water flow rates are assumed to follow Darcy's law. The relative permeability of each phase and their respective degrees of saturation are represented by the Van Genuchten's functions. We simulated laboratory and field gas injection experiments in Opalinus clay, a candidate geological formation for the geological disposal of radioactive wastes. The numerical results show good agreement with the experimental data measured in these tests in terms of two-phase flow regimes and hydromechanical response at various monitoring locations. Damage zones, either pre-existing due to excavation or induced by high gas injection pressure, are shown to clearly influence the gas flow rates and directions and would need special consideration in the design and safety assessment of the repository system.
A mathematical model that couples the governing and constitutive equations of two-phase flow and mechanical equilibrium has been developed to simulate gas injection tests for both laboratory- and field-scale experiments. The model takes into consideration the inherent anisotropy of sedimentary rocks due to bedding by including an anisotropic elastoplastic model for the mechanical process and using an anisotropic permeability tensor for the flow processes for both water and gas. The gas and water flow rates are assumed to follow Darcy's law. The relative permeability of each phase and their respective degrees of saturation are represented by the Van Genuchten's functions. We simulated laboratory and field gas injection experiments in Opalinus clay, a candidate geological formation for the geological disposal of radioactive wastes. The numerical results show good agreement with the experimental data measured in these tests in terms of two-phase flow regimes and hydromechanical response at various monitoring locations. Damage zones, either pre-existing due to excavation or induced by high gas injection pressure, are shown to clearly influence the gas flow rates and directions and would need special consideration in the design and safety assessment of the repository system.
Simultaneous gas and water flow in a damage-susceptible bedded argillaceous rock
2015
Article (Journal)
English
Simultaneous gas and water flow in a damage-susceptible bedded argillaceous rock
British Library Online Contents | 2015
|Constitutive model development and field simulation of excavation damage in bedded argillaceous rock
Taylor & Francis Verlag | 2023
|Hydromechanical response of a bedded argillaceous rock formation to excavation and water injection
Online Contents | 2015
|Hydromechanical response of a bedded argillaceous rock formation to excavation and water injection
British Library Online Contents | 2015
|British Library Online Contents | 2017
|