A platform for research: civil engineering, architecture and urbanism
Condition Assessment of Cementitious Materials Using Surface Waves in Ultrasonic Frequency Range
Surface waves propagating in a medium provide information about the mechanical properties and condition of the material. Variations in the material condition can be inferred from changes in the surface wave characteristics. Multichannel analysis of surface waves (MASW) is a well-established surface wave method used for determination of the shear-wave profile of the soil layers near the surface. The MASW test configuration is also applicable to assess the condition of construction materials using appropriate frequency range. Previous studies on the detection of surface-breaking cracks in concrete elements, using the dispersion and attenuation of ultrasonic waves, were successful; however, a complete damage assessment of the whole element was not in the scope of these studies. In this study, different wave characteristics, such as Rayleigh wave velocity, wave attenuation, and phase velocity dispersion, are investigated to evaluate their sensitivity to the damage in a medium. The condition of a test specimen, which is a half-space medium made of cement and sand, is evaluated using ultrasonic transducers for different damage cases. The recorded signals are processed using the Fourier and wavelet transforms to determine the surface wave characteristics. A new dispersion index (DI) is introduced, which represents the global correlation between the dispersion of phase velocity and damage level. All features are found to be capable of reflecting the damage in the test medium with different levels of sensitivity. Among the investigated parameters, the proposed dispersion index shows high sensitivity and linear correlation with the damage.
Condition Assessment of Cementitious Materials Using Surface Waves in Ultrasonic Frequency Range
Surface waves propagating in a medium provide information about the mechanical properties and condition of the material. Variations in the material condition can be inferred from changes in the surface wave characteristics. Multichannel analysis of surface waves (MASW) is a well-established surface wave method used for determination of the shear-wave profile of the soil layers near the surface. The MASW test configuration is also applicable to assess the condition of construction materials using appropriate frequency range. Previous studies on the detection of surface-breaking cracks in concrete elements, using the dispersion and attenuation of ultrasonic waves, were successful; however, a complete damage assessment of the whole element was not in the scope of these studies. In this study, different wave characteristics, such as Rayleigh wave velocity, wave attenuation, and phase velocity dispersion, are investigated to evaluate their sensitivity to the damage in a medium. The condition of a test specimen, which is a half-space medium made of cement and sand, is evaluated using ultrasonic transducers for different damage cases. The recorded signals are processed using the Fourier and wavelet transforms to determine the surface wave characteristics. A new dispersion index (DI) is introduced, which represents the global correlation between the dispersion of phase velocity and damage level. All features are found to be capable of reflecting the damage in the test medium with different levels of sensitivity. Among the investigated parameters, the proposed dispersion index shows high sensitivity and linear correlation with the damage.
Condition Assessment of Cementitious Materials Using Surface Waves in Ultrasonic Frequency Range
Kırlangıç, Ahmet Serhan (author) / Cascante, Giovanni / Polak, Maria Anna
2015
Article (Journal)
English
BKL:
38.58
Geomechanik
/
56.20
Ingenieurgeologie, Bodenmechanik
Local classification TIB:
770/4815/6545
Condition Assessment of Cementitious Materials Using Surface Waves in Ultrasonic Frequency Range
British Library Online Contents | 2015
|Condition assessment of longitudinal pavement joints using ultrasonic surface waves
British Library Online Contents | 2014
|Condition assessment of longitudinal pavement joints using ultrasonic surface waves
Online Contents | 2014
|Ultrasonic evaluation of self-healing within cementitious materials
British Library Conference Proceedings | 2023
|