A platform for research: civil engineering, architecture and urbanism
Classification of Polarimetric SAR Images Based on Modeling Contextual Information and Using Texture Features
This paper proposes a novel contextual method for classification of polarimetric synthetic aperture radar data. The method combines support vector machine (SVM) and Wishart classifiers to benefit from both parametric and nonparametric methods. This method computes the energy function of a Markov random field (MRF) in the neighborhoods of the pixel using Wishart distribution. It then relates the Markovian energydifference function to the SVM classifier. Therefore, the salt-and-pepper effect on the classified map is reduced using a contextual classifier. Moreover, to achieve the full advantage of spatial information, texture features are added into the contextual classification. Texture features are extracted from SPAN images and are added to the SVM classifier. In this paper, two Radarsat-2 polarimetric images acquired in the leaf-off and leaf-on seasons are used from a forest area. Efficient multitemporal information is exploited using composite kernels in SVM. Comparison of the proposed algorithm with the Wishart, Wishart-MRF, SVM, and SVM with composite kernel classifiers shows a 21.72%, 16.17%, 11.29%, and 8.19% improvement in overall accuracy, respectively. Moreover, incorporating texture features into classification results significant increase in the average accuracy in forest species compared with the use of only polarimetric features.
Classification of Polarimetric SAR Images Based on Modeling Contextual Information and Using Texture Features
This paper proposes a novel contextual method for classification of polarimetric synthetic aperture radar data. The method combines support vector machine (SVM) and Wishart classifiers to benefit from both parametric and nonparametric methods. This method computes the energy function of a Markov random field (MRF) in the neighborhoods of the pixel using Wishart distribution. It then relates the Markovian energydifference function to the SVM classifier. Therefore, the salt-and-pepper effect on the classified map is reduced using a contextual classifier. Moreover, to achieve the full advantage of spatial information, texture features are added into the contextual classification. Texture features are extracted from SPAN images and are added to the SVM classifier. In this paper, two Radarsat-2 polarimetric images acquired in the leaf-off and leaf-on seasons are used from a forest area. Efficient multitemporal information is exploited using composite kernels in SVM. Comparison of the proposed algorithm with the Wishart, Wishart-MRF, SVM, and SVM with composite kernel classifiers shows a 21.72%, 16.17%, 11.29%, and 8.19% improvement in overall accuracy, respectively. Moreover, incorporating texture features into classification results significant increase in the average accuracy in forest species compared with the use of only polarimetric features.
Classification of Polarimetric SAR Images Based on Modeling Contextual Information and Using Texture Features
Valadan Zoej, Mohammad Javad (author) / Masjedi, Ali / Maghsoudi, Yasser
2016
Article (Journal)
English
Local classification TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
Knowledge-Based Classification of Polarimetric SAR Images
Online Contents | 1994
|Texture and Speckle Statistics in Polarimetric SAR Synthesized Images
Online Contents | 2003
|Statistical pattern classification using contextual information
Elsevier | 1981
|