A platform for research: civil engineering, architecture and urbanism
Effect of Pile Group Configurations on Nonlinear Dynamic Response
AbstractA three-dimensional (3D) finite-element program has been developed for the dynamic analysis of pile groups. Soil and pile media have been discretized into 3D isoparametric continuum elements. To simulate the stress transfer between soil and pile under lateral load, surface elements have been introduced at the interface. To avoid the radiation effect due to dynamic loading, it is proposed to use the appropriate boundary conditions with introduction of Kelvin elements at the transmitting boundary. The displacements at each time step are evaluated using the implicit Newmark-beta integration method. In the iterative procedure, stresses at a given Gauss point are first checked and adjusted against a limiting tension criterion, and then these stresses are further checked against a yield criterion. Extra stresses computed during these checks are converted to load vectors that are applied in the next iteration. A parametric study is carried out to consider the effect of pile spacing, number of piles, arrangement of pile, and soil modulus on the response of pile group.
Effect of Pile Group Configurations on Nonlinear Dynamic Response
AbstractA three-dimensional (3D) finite-element program has been developed for the dynamic analysis of pile groups. Soil and pile media have been discretized into 3D isoparametric continuum elements. To simulate the stress transfer between soil and pile under lateral load, surface elements have been introduced at the interface. To avoid the radiation effect due to dynamic loading, it is proposed to use the appropriate boundary conditions with introduction of Kelvin elements at the transmitting boundary. The displacements at each time step are evaluated using the implicit Newmark-beta integration method. In the iterative procedure, stresses at a given Gauss point are first checked and adjusted against a limiting tension criterion, and then these stresses are further checked against a yield criterion. Extra stresses computed during these checks are converted to load vectors that are applied in the next iteration. A parametric study is carried out to consider the effect of pile spacing, number of piles, arrangement of pile, and soil modulus on the response of pile group.
Effect of Pile Group Configurations on Nonlinear Dynamic Response
Ladhane, K. B (author) / Sawant, V. A
2016
Article (Journal)
English
Dynamic response of pile groups with different configurations
British Library Online Contents | 1993
|Nonlinear Dynamic Impedance of Pile Group Foundation
British Library Conference Proceedings | 1995
|Nonlinear Vertical Dynamic Response of Pile Groups
British Library Conference Proceedings | 2009
|Nonlinear analysis for dynamic lateral pile response
Online Contents | 1996
|