A platform for research: civil engineering, architecture and urbanism
Faraday Rotation Correction for the SMAP Radiometer
Faraday rotation is an important issue for remote sensing of parameters such as soil moisture and ocean salinity, which are best done at low microwave frequency (e.g., L-band). Modern instruments such as the radiometer on the Soil Moisture and Ocean Salinity (SMOS) satellite and the Aquarius radiometers include polarimetric radiometer channels specifically to implement a correction for Faraday rotation. This works well over ocean, but it is known that over inhomogeneous scenes, such as a land/water mixture, significant errors can occur. This is a particularly important issue for the newest L-band sensor in space, the radiometer on the Soil Moisture Active Passive (SMAP) satellite, where the goal is remote sensing over land (soil moisture) and where the conical scan induces rapid variation in Faraday rotation. Analysis is presented here of the issues associated with retrieving Faraday rotation using the SMAP geometry and antenna pattern. It is shown that, in addition to scenes with a mixture of land and water, scenes with significant vegetation canopy are also associated with large errors in the retrieved Faraday rotation. Examples from the SMAP radiometer support the analysis.
Faraday Rotation Correction for the SMAP Radiometer
Faraday rotation is an important issue for remote sensing of parameters such as soil moisture and ocean salinity, which are best done at low microwave frequency (e.g., L-band). Modern instruments such as the radiometer on the Soil Moisture and Ocean Salinity (SMOS) satellite and the Aquarius radiometers include polarimetric radiometer channels specifically to implement a correction for Faraday rotation. This works well over ocean, but it is known that over inhomogeneous scenes, such as a land/water mixture, significant errors can occur. This is a particularly important issue for the newest L-band sensor in space, the radiometer on the Soil Moisture Active Passive (SMAP) satellite, where the goal is remote sensing over land (soil moisture) and where the conical scan induces rapid variation in Faraday rotation. Analysis is presented here of the issues associated with retrieving Faraday rotation using the SMAP geometry and antenna pattern. It is shown that, in addition to scenes with a mixture of land and water, scenes with significant vegetation canopy are also associated with large errors in the retrieved Faraday rotation. Examples from the SMAP radiometer support the analysis.
Faraday Rotation Correction for the SMAP Radiometer
Le Vine, David M (author) / Abraham, Saji / Peng, Jinzheng
2016
Article (Journal)
English
Local classification TIB:
770/3710/5670
BKL:
38.03
Methoden und Techniken der Geowissenschaften
/
74.41
Luftaufnahmen, Photogrammetrie
SMAP L-Band Microwave Radiometer: Instrument Design and First Year on Orbit
Online Contents | 2017
|SMAP L-Band Microwave Radiometer: Instrument Design and First Year on Orbit
Online Contents | 2017
|