A platform for research: civil engineering, architecture and urbanism
Experimental Investigation of Circular Reinforced Concrete Columns under Different Loading Histories
Three reinforced concrete (RC) circular column specimens without an effective concrete cover were tested under constant axial compressive as well as cyclic lateral loading. The seismic behavior of the specimens under different loading paths was examined with the objective of understanding the influence of displacement history sequence on the seismic behavior of the columns in near-fault earthquakes. The influence of displacement history sequence upon the hysteretic characteristics, stiffness degradation, lateral capacity, as well as energy dissipation analysis was conducted. The hoop strains of lateral reinforcement at varied column heights under cyclic loading were attained by means of 8-16 strain gauges attached along the hoops. Additionally, the characteristics of strain distribution were investigated in the transverse reinforcement. The results of strain distribution were evaluated with Mander's confinement stress model and the distribution around the cross section. The length of the plastic hinge at the end of the specimen was evaluated by measurement as well as the inverse analysis. Finally, the deformation of the specimen, which includes the components of shear deformation, bending deformation and bonding-slip deformation, was evaluated and successfully separated.
Experimental Investigation of Circular Reinforced Concrete Columns under Different Loading Histories
Three reinforced concrete (RC) circular column specimens without an effective concrete cover were tested under constant axial compressive as well as cyclic lateral loading. The seismic behavior of the specimens under different loading paths was examined with the objective of understanding the influence of displacement history sequence on the seismic behavior of the columns in near-fault earthquakes. The influence of displacement history sequence upon the hysteretic characteristics, stiffness degradation, lateral capacity, as well as energy dissipation analysis was conducted. The hoop strains of lateral reinforcement at varied column heights under cyclic loading were attained by means of 8-16 strain gauges attached along the hoops. Additionally, the characteristics of strain distribution were investigated in the transverse reinforcement. The results of strain distribution were evaluated with Mander's confinement stress model and the distribution around the cross section. The length of the plastic hinge at the end of the specimen was evaluated by measurement as well as the inverse analysis. Finally, the deformation of the specimen, which includes the components of shear deformation, bending deformation and bonding-slip deformation, was evaluated and successfully separated.
Experimental Investigation of Circular Reinforced Concrete Columns under Different Loading Histories
Yi, Wei-Jian (author) / Zhou, Yun / Liu, Yi / Liu, Liwei
2016
Article (Journal)
English
Experimental Investigation of Circular Reinforced Concrete Columns under Different Loading Histories
Online Contents | 2015
|Experimental Investigation of Circular Reinforced Concrete Columns under Different Loading Histories
Taylor & Francis Verlag | 2016
|